Climate-groundwater dynamics inferred from GRACE and the role of hydraulic memory

Simon Opie1,*, Richard G. Taylor1, Chris M. Brierley1, Mohammad Shamsudduha2 and Mark O. Cuthbert3,4

1 Department of Geography, University College London, London, UK
2 Department of Geography, University of Sussex, Falmer, Brighton, UK
3 School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK
4 Connected Waters Initiative Research Centre, University of New South Wales, Sydney, New South Wales, Australia

* Corresponding author: Simon Opie (simon.opie.18@ucl.ac.uk)

Abstract

Groundwater is the largest store of freshwater on Earth after the cryosphere and provides a substantial proportion of the water used for domestic, irrigation and industrial purposes. Knowledge of this essential resource remains incomplete, in part, because of observational challenges of scale and accessibility. Here we examine a 14-year period (2002-2016) of GRACE observations to investigate climate-groundwater dynamics of 14 tropical and sub-tropical aquifers selected from WHYMAP’s 37 large aquifer systems of the world. GRACE-derived changes in groundwater storage resolved using GRACE JPL Mascons and the CLM Land Surface Model are related to precipitation time series and regional-scale hydrogeology. We show that aquifers in dryland environments exhibit long-term hydraulic memory through a strong correlation between groundwater storage changes and annual precipitation anomalies integrated over the time series; aquifers in humid environments show short-term memory through strong correlation with monthly precipitation. This classification is consistent with estimates of Groundwater Response Times calculated from the hydrogeological properties of each system, with long (short) hydraulic memory associated with slow (rapid) response times. The results suggest that groundwater systems in dryland environments may be less sensitive to seasonal climate variability but vulnerable to long-term trends from which they will be slow to recover. In contrast, aquifers in humid regions may be more sensitive to seasonal climate disturbances such as ENSO-related drought but may also be relatively quick to recover. Exceptions to this general pattern are traced to human interventions through groundwater abstraction. Hydraulic memory is an important factor in the management of groundwater resources, particularly under climate change.

https://doi.org/10.5194/esd-2019-83
Preprint. Discussion started: 16 January 2020
© Author(s) 2020. CC BY 4.0 License.
1.0. Introduction:

The availability of freshwater is essential for sustaining human life, economic security, and access to the benefits of a wide range of ecosystem services (Taylor et al., 2013a). After the cryosphere, groundwater is the second largest store of freshwater on the planet supplying 36% of domestic water, 42% of irrigation for agriculture and 27% of industrial water use (Döll et al., 2012). Baseflow from groundwater sustains rivers and wetlands in the absence of rainfall and is therefore fundamentally important to the ecology of semi-arid and arid regions in particular (Alley et al., 2002; Graaf et al., 2019). Future climate change in which anthropogenic emissions of greenhouse gases transform patterns of natural variability, together with substantial socio-economic change, predicate that management of freshwater resources will become a critical task (Famiglietti, 2014). In a climate where it is broadly predicted that ‘wet gets wetter, dry gets drier’ (Trenberth, 2011), water storage at and below the land surface will be a vital tool in enabling successful adaptation to the changing global environment (Damkjaer and Taylor, 2017; Wada, 2016).

Despite the importance of groundwater there are considerable gaps in current knowledge and understanding (Güntner et al., 2007). Direct observations of groundwater are sparse in relation to its geographical scale so most global or regional groundwater data are based on output from large-scale models. These include global hydrological models (GHMs) (Sood and Smakhtin, 2015) or land-surface models (LSMs) (Bierkens, 2015; Overgaard et al., 2006; Wood et al., 2011) for which there are often insufficient data available to constrain or calibrate (Döll et al., 2016). Model simulation of key processes such as soil hydrodynamics and groundwater recharge is therefore based on theoretical frameworks rather than field data (Scanlon et al., 2002). As a result, there is also considerable uncertainty about climate-groundwater dynamics. Recent work in this area has either focused on localised observations of changes in Groundwater Storage (∆GWS) from piezometry (Cuthbert et al., 2019b) or occurred adjacent to large centres of population where human intervention, through extraction of groundwater by pumping, can greatly influence observational measurements (Scanlon et al., 2018). In the context of a recent, rapid escalation in groundwater abstraction of ~15% per decade from 1960 to 2010 (Wada et al., 2014), an understanding of climate-groundwater dynamics, supported by large-scale observational data, is required to inform sustainable access to groundwater resources (Taylor et al., 2009).

In response to the lack of in situ field observations, remote-sensing by satellite is increasingly being utilised to expand the scope of observational data available to Earth sciences (Acker and Leptoukh, 2007). An important advance in the quality of global data for hydrological studies has come from the Gravity Recovery and Climate Experiment (GRACE), a collaboration...
between the National Aeronautics and Space Administration (NASA) in the USA and the German Aerospace Centre (DLR) launched in March 2002 (Tapley et al., 2004). Completed sets of ~monthly measurements are used to derive the changes in mass at the Earth’s surface and from these data mass fluxes can be extracted that directly relate to the hydrosphere. Over land, the flux is expressed as a change in Total Water Storage (ΔTWS) at a spatial resolution of ~300km and with an expected accuracy of better than 2 cm equivalent water height (EWH) (Tapley et al., 2004). GRACE ceased operation due to battery failure in mid-2016 having created a record of 163 monthly gravity solutions (Tapley et al., 2019). Although GRACE operated for ten years longer than anticipated at its launch, it is a relatively brief dataset in relation to large-scale climate patterns impacting the global hydrological system with frequencies of several years or decades (e.g. Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO)). Nevertheless, inter-annual periodicities associated with the El Niño Southern Oscillation (ENSO) and the Antarctic Circumpolar Wave (ACW) have been detected (Mémin et al., 2015; Ni et al., 2018; Phillips et al., 2012).

Intrinsic parameters of GRACE data effectively define the spatial and temporal dimensions of this study but there are additional constraints related to the derivation of ΔGWS data from GRACE ΔTWS that also need to be considered. The sub-division of GRACE ΔTWS into its component parts, including ΔGWS, requires the application of GHM or LSM output that is itself subject to associated uncertainty, as already noted (Döll et al., 2014). It has been demonstrated that there is relatively poor correlation between GRACE and GHMs/LSMs in the evaluation of ΔTWS, with significant discrepancies at the basic level of whether storage trends are increasing or decreasing (Scanlon et al., 2018). These findings have been confirmed with reference to regional piezometric groundwater measurements from tropical aquifers in Africa (Bonsor et al., 2018). Thus, the application of GRACE data to ΔGWS implies three distinct areas of uncertainty: in the processing of the GRACE signal, accuracy of GHM/LSM model projections and mutual consistency of the observed (GRACE) and modelled (GHM/LSM) data (Long et al., 2015).

This study investigates the spatio-temporal properties of climate-groundwater dynamics using a subset of the 37 Large Aquifer Systems of the World (LASW) as defined by the Worldwide Hydrogeological Mapping and Assessment Programme (WHYMAP) (“BGR - WHYMAP - Large Aquifers,” 2008), and shown in Figure S1. This subset comprises aquifers that lie broadly within the tropics and sub-tropics climate variability is mostly defined by rainfall (Shepherd, 2014). The 14 aquifers selected are listed in Table 1 together with their key characteristics including Aridity Index (AI) calculated from the Consultative Group for International Agriculture Research’s Consortium for Spatial Information (CGIAR-CSI) Global-Aridity Dataset (Trabucco and Zomer, 2019), shown in Figure 1. Following the work of (Shamsudduha and Taylor, 2019), the groundwater storage response to
regional climate variability for these 14 large scale aquifer systems is investigated using ∆GWS data extracted from the whole of the available GRACE ∆TWS time series (August 2002 – July 2016) together with climate data that are defined by the areal extent of each of the aquifer systems.

Several studies have used GRACE data to examine storage changes within a particular GW system e.g. (Becker et al., 2010; Bonsor et al., 2018; Chen et al., 2016, 2010; Henry et al., 2011; Z. Huang et al., 2015; Ramillien et al., 2014; Shamsudduha et al., 2017, 2012; Tiwari et al., 2009; Xavier et al., 2010; Yeh et al., 2006). Here, we examine the dynamics of climate-groundwater interactions inferred from the underlying patterns of large-scale ∆GWS in response to extremes of precipitation. We find that hydraulic memory (HM) is a key component in the classification of groundwater responses to climate variability. We then seek to reconcile the results with reference to the physical characteristics of individual aquifer systems (Cuthbert et al., 2019a) whilst accounting for anomalous responses in ∆GWS to climate variability.

![Figure 1: 14 of the World’s Large-scale Aquifers](https://doi.org/10.5194/esd-2019-83)

Figure 1: 14 of the World’s Large-scale Aquifers (the Study Aquifers) overlaid on CGIAR-CSI Global-Aridity dataset (Trabucco & Zomer, 2019).
<table>
<thead>
<tr>
<th>WHYMAP Aquifer Number</th>
<th>Aquifer name</th>
<th>Continent</th>
<th>Population (millions)</th>
<th>Aquifer area (km²)</th>
<th>Proportion of Irrigation GW-fed (%)</th>
<th>Climate zone based on aridity index</th>
<th>Mean (2002-16) annual precipitation (mm)</th>
<th>Rainfall variability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Senegal-Mauritanian Basin</td>
<td>Africa</td>
<td>17.77</td>
<td>295k</td>
<td>1.0</td>
<td>Semi-Arid</td>
<td>540</td>
<td>14.6</td>
</tr>
<tr>
<td>8</td>
<td>Umm Ruwaba Aquifer</td>
<td>Africa</td>
<td>10.52</td>
<td>509k</td>
<td>0.0</td>
<td>Semi-Arid</td>
<td>789</td>
<td>10.7</td>
</tr>
<tr>
<td>10</td>
<td>Congo Basin</td>
<td>Africa</td>
<td>34.74</td>
<td>1.49m</td>
<td>0.0</td>
<td>Humid</td>
<td>1566</td>
<td>5.6</td>
</tr>
<tr>
<td>11</td>
<td>Upper Kalahari-Cavelai-Zambezi Basin</td>
<td>Africa</td>
<td>6.02</td>
<td>1.00m</td>
<td>0.1</td>
<td>Semi-Arid</td>
<td>819</td>
<td>10.0</td>
</tr>
<tr>
<td>13</td>
<td>Karoo Basin</td>
<td>Africa</td>
<td>14.53</td>
<td>568k</td>
<td>2.1</td>
<td>Semi-Arid</td>
<td>479</td>
<td>17.6</td>
</tr>
<tr>
<td>16</td>
<td>California Central Valley Aquifer System</td>
<td>North America</td>
<td>8.10</td>
<td>71k</td>
<td>57.8</td>
<td>Semi-Arid</td>
<td>515</td>
<td>32.0</td>
</tr>
<tr>
<td>19</td>
<td>Amazon Basin</td>
<td>South America</td>
<td>8.93</td>
<td>2.28m</td>
<td>1.0</td>
<td>Humid</td>
<td>2505</td>
<td>8.3</td>
</tr>
<tr>
<td>20</td>
<td>Maranhao Basin</td>
<td>South America</td>
<td>10.81</td>
<td>593k</td>
<td>32.6</td>
<td>Humid</td>
<td>1502</td>
<td>15.7</td>
</tr>
<tr>
<td>21</td>
<td>Guarani Aquifer (Parana Basin)</td>
<td>South America</td>
<td>47.84</td>
<td>1.83m</td>
<td>20.5</td>
<td>Humid</td>
<td>1450</td>
<td>10.6</td>
</tr>
<tr>
<td>23</td>
<td>Indus River Basin</td>
<td>Asia</td>
<td>155.85</td>
<td>308k</td>
<td>31.0</td>
<td>Arid</td>
<td>375</td>
<td>16.2</td>
</tr>
<tr>
<td>24</td>
<td>Ganges-Brahmaputra Basin</td>
<td>Asia</td>
<td>596.44</td>
<td>616k</td>
<td>55.8</td>
<td>Humid</td>
<td>1391</td>
<td>12.1</td>
</tr>
<tr>
<td>29</td>
<td>North China Plains Aquifer System</td>
<td>Asia</td>
<td>336.70</td>
<td>439k</td>
<td>37.1</td>
<td>Dry Sub-Humid</td>
<td>826</td>
<td>10.0</td>
</tr>
<tr>
<td>36</td>
<td>Great Artesian Basin</td>
<td>Australia</td>
<td>0.20</td>
<td>1.77m</td>
<td>0.9</td>
<td>Arid</td>
<td>444</td>
<td>28.9</td>
</tr>
<tr>
<td>37</td>
<td>Canning Basin</td>
<td>Australia</td>
<td>0.01</td>
<td>433k</td>
<td>0.4</td>
<td>Arid</td>
<td>443</td>
<td>21.2</td>
</tr>
</tbody>
</table>

**Table 1**: Characteristics of the 14 Aquifer Systems selected for the study according to the WHYMebp and CGIAR-CSI databases with statistics giving (L to R): total number of resident population, aquifer area, proportion of irrigation GW-fed, mean aridity index classification (Trabucco and Zomer, 2019), mean annual rainfall and mean variability in annual rainfall.
Methods:

2.1. GWS derived from GRACE data:

Mass fluxes relating to the hydrosphere contained in the GRACE land-signal measurement of changes in the Earth’s gravitational field are defined as $\Delta$TWS. In order to obtain information relating specifically to groundwater, this signal is separated into the component parts that comprise TWS, generally represented as:

$$\Delta$TWS = $\Delta$GWS + $\Delta$SWS + $\Delta$SMS + $\Delta$SNS \quad (1)$$

where SWS is surface water storage, SMS is soil moisture storage and SNS is snow-water equivalent storage. $\Delta$GWS is then derived from $\Delta$TWS according to the following equation:

$$\Delta$GWS = $\Delta$TWS – ($\Delta$SWS + $\Delta$SMS + $\Delta$SNS) \quad (2)$$

The locations of the 14 aquifers are outside areas where changes in snow-water equivalent substantially impact $\Delta$TWS (Getirana et al., 2017). $\Delta$SNS can consequently be omitted so that Eq. (2) can be rewritten for the purposes of this particular study as:

$$\Delta$GWS = $\Delta$TWS – ($\Delta$SWS + $\Delta$SMS) \quad (3)$$

Since GRACE started transmitting, several solutions have been developed for analysing and producing GRACE $\Delta$TWS data to increasing levels of accuracy, with the intention that the data be readily and freely available for research (Landerer and Swenson, 2012). In this instance, three different products were drawn from Shamsudduha and Taylor (2019), two of which are spherical harmonics (SH) solutions comprising CSR Land (version RL05.DSTvSCS1409) from the Jet Propulsion Laboratory (JPL) at NASA and CNES/GRGS (version RL03-v1) from the French Centre National d’Etudes Spatiales, and one JPL-Mascon (version RL05M 1.MSCNv01) from JPL-NASA. To derive $\Delta$TWS, all GRACE solutions require additional processing that include corrections for glacial isostatic rebound and atmospheric mass variation (Landerer and Swenson, 2012). SH solutions also require spatial filtering (or ‘de-striping’) whereas JPL-Mascon does not as it directly converts the GRACE
signal into mass concentration blocks (Mascons), rendering monthly gravitational fields directly as 3°x3° gridded spatial components to reduce errors (Watkins et al., 2015).

On inspection, the divergence between the 3 ΔTWS datasets was significant when summed over the time series. The relatively large coefficient of variance (COV), -104%, calls into question use of an ensemble mean for this study. Such an approach may be appropriate for the use of SH products alone (Sakumura et al., 2014) but it is preferable not to combine SH products and Mascons (Landerer, pers. comm.). Consequently we rely solely on the JPL-Mascon dataset possessing a better signal-to-noise ratio and potentially less error (Scanlon et al., 2016; Watkins et al., 2015; Xie et al., 2018). The employed JPL-Mascon dataset has been spatially sampled at a 0.5° grid using dimensionless scaling factors provided as 0.5°x0.5° bins derived from the CLM4.0 LSM (Long et al., 2015; Wiese et al., 2016). GRACE ΔTWS is not a time-invariant measure (Wahr et al., 1998) and in the standard datasets all anomalies are given with respect to a baseline which is the mean over the period January 2004 to December 2009 (JPL NASA, 2019). Here, the completed available GRACE ΔTWS time series is examined with respect to climate anomalies in the same timeframe. Consequently, the JPL-Mascon ΔTWS dataset has been rescaled with respect to a time-mean taken over the whole period of GRACE operation (08.2002 – 07.2016), which is the study reference period (SRP) (JPL NASA, 2019).

As set out in Eq. (3), datasets for ΔSMS and ΔSWS derived from LSMs are required to determine ΔGWS from ΔTWS since observational data at the spatio-temporal scales of this study do not exist. Datasets for the 14 aquifer systems were drawn from NASA’s Global Land Data Assimilation System (GLDAS) (Rodell et al., 2004) comprising the output from four different LSMs (Shamsudduha and Taylor, 2019): the Common [Community] Land Model (CLM, version 2.0), Noah (version 2.7.1), the Variable Infiltration Capacity (VIC) model (version 1.0), and Mosaic (version 1.0) (Rui and Beaudoin, 2019). As with ΔTWS, analysis of the four LSM datasets for ΔSWS+ΔSMS shows that their divergence summed over the entire time series is substantial, with a COV of 258%,

suggesting that a LSM-ensemble mean approach may also not be appropriate for this analysis. Further, the inter- and intra- model variability of ΔSWS in the LSM datasets, assessed as surface runoff (e.g. Shamsudduha and Taylor, 2019; Thomas et al., 2017), is much less significant than that of ΔSMS (inter-model COV 378%). In the absence of consideration of ΔSWS, groundwater recharge is primarily determined by the effect of evapotranspiration on moisture in the soil zone (Long and Mahler, 2013). Therefore, for this study, modelling of ΔSMS is a key determinant of the outcomes for ΔGWS computed using Eq. (3) (de Vries and Simmers, 2002). Modelled soil profiles vary substantially in each of the 4 LSMs ranging in depth from 3.5m (Mosaic) to 1.9m (VIC) and, in vertical layers, from 10 (CLM) to 3 (VIC & Mosaic) (Rodell et al., 2004). CLM 2.0 (Bonan et al., 2002; Dai et al.,
2003) with 3.4m depth and 10 vertical layers features the most well developed soil model (Scanlon et al., 2018), has been shown to perform well in comparative testing (Scanlon et al., 2018; Spennemann et al., 2014). In addition, CLM has demonstrated appropriate variability in initial ensemble model runs undertaken here, meaning that ∆SMS is almost always less than the magnitude of ∆TWS thereby ensuring that ∆GWS estimates derived from Eq. (3) are not arbitrarily high or low (Shamsudduha and Taylor, 2019). Therefore, this study employs a single model, CLM, for ∆SMS and ∆SWS rather than adopting a LSM ensemble mean approach.

2.2. Climatology:

Individual aquifer system shapefiles from the WHYMAP LASW were prepared as ASCII files and uploaded to KNMI Climate Explorer (KNMI Climate Explorer, 2018). This allowed a range of climate data to be extracted for the precise spatial boundaries of each system. In particular, precipitation (PCP) data from the CRU TS4.03 dataset at 0.5º resolution (Climate Research Unit, University of East Anglia, 2019) was obtained together with anomalies (PCPA) normalised for the SRP (2002-16). The CRU TS4.03 datasets together with the ∆GWS derived from JPL-Mascon ∆TWS and CLM 2.0 ∆SMS & ∆SWS, in accordance with Eq. (3), were used to create time series analyses to explore correlations over different time and volume components through integration. In this respect the use of ‘annual’ in this study implies the appropriate hydrological year.

In order to calibrate the time series for each aquifer system prior to further analysis, the lag between monthly PCP, as the primary climate-groundwater index, and monthly GRACE ∆TWS was set by maximising the Pearson Correlation Coefficient (PCC) between the two datasets, validated by point-wise verification of alignment of the time series. In the majority of cases, this comparison showed ∆TWS lagging PCP by two months. The lag for the PCPA time series were set in the same way with relation to ∆GWS but with the already determined PCP time series lag set as a minimum. In the case of all aquifer systems except for the Congo, Canning and Indus River Basins, this procedure resulted in a consistent lag being applied to all of the time series investigations of each aquifer.

Initial investigations also established that only relatively weak first-order correlations exist between ∆TWS and other monthly observational climate data such as the self-calibrating Palmer Drought Severity Index (PDSI-sc) (Wells et al., 2004) and Mean Temperature anomalies (CPC GHCN/CAMS t2m analysis) (Fan and van den Dool, 2008). By comparison with both these measures, it appeared that PCPA carried a stronger climate variability signal due to the tropical/sub-tropical location of the selected aquifers (Allan et al., 2010; Shepherd, 2014). An analysis was then conducted to test for correlations between ∆GWS and a series of measures of precipitation. Three separate time series of
precipitation were developed to examine the temporal response of the study LASW with respect to the process by which precipitation at the land surface contributes to $\Delta$GWS:

1. $PCP = $ monthly precipitation
2. $PCPA = $ monthly precipitation anomalies with respect to the time-mean baseline for the study reference period (SRP – 2002-16)
3. $\int PCPA = $ cumulative monthly rainfall anomalies derived by integrating the PCPA time series

These monthly series were also summed to provide annual time series for each aquifer system. Correlation was measured using the PCC with statistical significance determined by a t-test with $\alpha=0.05$ (Spearman, 1904). In addition, as previously stated, the CGIAR-CSI Global-Aridity dataset (Trabucco and Zomer, 2019) was obtained and a numerical AI for each aquifer was extracted as a spatial mean value using QGIS. AI was used to place each aquifer into the climate zone classification specified by the dataset as set out in Table 1. Of the climate zones relating to the 14 aquifer systems, 3 are Arid, 5 are Semi-Arid, 1 is Dry Semi-Humid, giving 9 in total in dryland zones (Corvalán et al., 2005), and 5 are Humid.

2.3. Hydraulic Memory (HM):

In using cumulative rainfall anomalies, this study invokes the concept of system memory (Weber and Stewart, 2004). Several studies have considered the question of hydraulic or hydrologic memory, both as it impacts soil moisture including land/atmosphere dynamics (Castro et al., 2009; Lo and Famiglietti, 2010; Wu et al., 2002), and groundwater (Currell et al., 2016; Cuthbert et al., 2019a; Güntner et al., 2007; Rodell and Famiglietti, 2001). Central to the definition of this ‘memory’ is that it represents the time taken for a system to re-equilibrate following a change in boundary conditions (Downing et al., 1974). In the case of an aquifer system, approximated to a one-dimensional flow of uniform diffusivity, the groundwater response time (GRT) is given by Eq. (4):

$$GRT = \frac{L^2S}{\beta T}$$

where $L$ is a measure of the scale of the system, $S$ is the storativity, $\beta$ is a dimensionless constant and $T$ is transmissivity. Qualitatively Eq. (4) implies that long response times are characterised by large-scale systems and/or low hydraulic diffusivity (i.e. combination of high $S$ and low $T$) (e.g. Kooi and Groen, 2003). An alternative approach to quantifying memory may be needed in more complex -
and realistic – multidimensional flow situations (see Cuthbert et al., 2019a). Nevertheless, Eq. (4) still provides a useful order of magnitude approximation. Here, it is helpful to consider the response time as a delay between system input and system output whereby the output state $H$, at time $t$, is given by:

$$H(t) = \int_{-\infty}^{t} p(\tau) \theta(t - \tau) \, d\tau \quad (5)$$

where $p(\tau)$ is the input state or function at time $\tau$, $(t-\tau)$ is the delay between output and input, and $\theta$ is an Impulse Response Function (IRF), also known as a transfer function (Long and Mahler, 2013). The IRF is a multi-parameter function that is intended to model the properties of the system so that the output of the IRF determines the time, $t$, at which the state $H$ is reached. The hydraulic memory is quantified by the length of time that the effect of the input persists in the system. As the IRF is commonly exponential, making the equilibrium state asymptotic, system memory can be defined as the time interval at which the IRF is 95% complete. This approach has been successfully applied to modelling aquifer responses to precipitation validated by piezometry in both the USA (Long and Mahler, 2013) and the Netherlands (von Asmuth and Knotters, 2004). Alternatively, system memory may be defined as the length of time taken for the effect of the anomalous input to decay to $1/e$ of its starting value where this can be explicitly measured (Cuthbert et al., 2019a; Lo and Famiglietti, 2010). In relation to Eq. (5), chosen precipitation measures are $p(\tau)$ input functions, and $\Delta GWS$ represents $H(t)$, the output measure. The timestep, $\tau$, for each of the precipitation time series used is as shown in Table 2. Correlation between $\Delta GWS$ (output) and a particular precipitation dataset (input) can be considered to be a measure of the persistence of the effect of that input integrated over the timestep. The degree of correlation between $\Delta GWS$ and annual $\int PCPA$ is thus indicative of the duration of HM in the aquifer system.

<table>
<thead>
<tr>
<th>Time series:</th>
<th>Timestep $\tau$:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCP &amp; PCPA</td>
<td>1 month</td>
</tr>
<tr>
<td>PCPA (HY)</td>
<td>1 year</td>
</tr>
<tr>
<td>$\int PCPA$ (HY)</td>
<td>$1 \text{ year} \leq \tau \leq 14 \text{ years}$ (upper limit set by length of dataset)</td>
</tr>
</tbody>
</table>

**Table 2:** The timestep, $\tau$, for each of the precipitation time series investigated in the study
2.4. Regional-Scale Hydrogeology:

In an exploration of climate-groundwater dynamics using GRACE data, the lack of direct physical observational data means that it is necessary to demonstrate that results are not simply artefacts of modelling and signal processing (Rodell et al., 2009). The role of hydrogeology in determining groundwater dynamics is widely acknowledged (Befus et al., 2017; Cuthbert et al., 2019a; de Vries and Simmers, 2002; Lanen et al., 2013). Here, we seek to validate results inferred from GRACE data with reference to the physical characteristics of specific aquifer systems. In order to categorise the hydrogeology of each aquifer system, a number of available global datasets were sourced as raster files and interrogated in QGIS using the aquifer vector files from WHYMAP LASW. Examined datasets include:

1. Groundwater Response Time (GRT) (Cuthbert et al., 2019a)
2. Hydraulic Conductivity (K) and Porosity (Φ) GHLYMPS high resolution maps (Gleeson et al., 2014)
3. Water Table Depth (WTD) (Fan et al., 2013)

As defined above, the GRT is a temporal measure of the latency of aquifer systems that is derived from their scale and physical properties via Eq. (4). This measure relies on the other datasets listed for its calculation (Cuthbert et al., 2019a). K and Φ are high-resolution datasets derived from recently developed lithological maps of the Earth’s surface (Hartmann and Moosdorf, 2012) and their computation uses established geological parameters (Gleeson et al., 2014). However, K is based on permeability mapping from hydrolithologies that have a standard deviation of ~2 orders of magnitude (Gleeson et al., 2011). WTD is 30 arc-second (~1km.) resolution dataset compiled from available observational data extended by modelled interpolation (Fan et al., 2013). All of these datasets are global and derived from combinations of observations and modelled data.

3.0. Results:

The main results for each aquifer system are given as a monthly time series of ΔTWS and ΔGWS vs. PCP and an annual time series of ΔGWS vs. PCPA and JPCPA, shown as Figure 2 a-r for dryland systems and Figure 3 a-j for humid systems. The outcomes are summarised in Table 3. As a general
result, all time series plots show a qualitative relationship between ∆GWS and PCP that exhibits interesting and potentially important spatio-temporal variations. The quantitative results show that for ∆GWS there is a strong correlation with annual ∫PCPA for aquifer systems in dryland environments whereas in humid environments, the strongest correlation is with monthly PCP. Three aquifers – Guarani Aquifer, Indus River Basin and Canning Basin - do not follow this general classification and anomalies are discussed further in section 4.3 below, and in the SI.

<table>
<thead>
<tr>
<th>Aquifer System</th>
<th>Monthly PCP vs ∆TWS</th>
<th>Monthly PCP vs ∆GWS</th>
<th>Monthly PCPA vs ∆GWS</th>
<th>Annual ∫PCPA vs ∆GWS</th>
<th>Aridity Class</th>
<th>Aridity Index</th>
<th>GWS Net Change over SRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Kalahari</td>
<td>0.64 (2)</td>
<td>0.47 (2)</td>
<td>0.13 (2)</td>
<td>0.22 (2)</td>
<td>0.67 (2)</td>
<td>0.88 (2)</td>
<td>Semi-Arid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.42</td>
<td></td>
<td>Increasing</td>
</tr>
<tr>
<td>Karoo</td>
<td>0.15 (7)</td>
<td>0.25 (7)</td>
<td>0.07 (7)</td>
<td>0.21 (7)</td>
<td>0.71 (7)</td>
<td>0.88 (7)</td>
<td>Semi-Arid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.28</td>
<td></td>
<td>Increasing</td>
</tr>
<tr>
<td>Senegal</td>
<td>0.67 (2)</td>
<td>0.55 (2)</td>
<td>0.15 (2)</td>
<td>0.14 (2)</td>
<td>0.61 (2)</td>
<td>0.87 (2)</td>
<td>Semi-Arid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.20</td>
<td></td>
<td>Increasing</td>
</tr>
<tr>
<td>California Central Valley</td>
<td>0.53 (2)</td>
<td>0.46 (2)</td>
<td>0.26 (2)</td>
<td>0.56 (2)</td>
<td>0.60 (2)</td>
<td>0.84 (2)</td>
<td>Semi-Arid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.22</td>
<td></td>
<td>Decreasing</td>
</tr>
<tr>
<td>Great Artesian</td>
<td>0.45 (2)</td>
<td>0.33 (2)</td>
<td>0.34 (2)</td>
<td>0.67 (2)</td>
<td>0.61 (2)</td>
<td>0.80 (2)</td>
<td>Arid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.18</td>
<td></td>
<td>Stable</td>
</tr>
<tr>
<td>North China Plains</td>
<td>0.34 (2)</td>
<td>0.22 (2)</td>
<td>0.18 (2)</td>
<td>0.26 (2)</td>
<td>0.65 (2)</td>
<td>0.80 (2)</td>
<td>Dry Sub-Humid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.57</td>
<td></td>
<td>Decreasing</td>
</tr>
<tr>
<td>Umm Ruwaba</td>
<td>0.87 (2)</td>
<td>0.83 (2)</td>
<td>0.12 (2)</td>
<td>0.55 (2)</td>
<td>0.20 (2)</td>
<td>0.64 (2)</td>
<td>Semi-Arid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.33</td>
<td></td>
<td>Stable</td>
</tr>
<tr>
<td>Congo</td>
<td>0.67 (2)</td>
<td>0.67 (2)</td>
<td>0.11 (3)</td>
<td>0.43 (3)</td>
<td>0.27 (3)</td>
<td>0.62 (3)</td>
<td>Humid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.22</td>
<td></td>
<td>Stable</td>
</tr>
<tr>
<td>Maranhao</td>
<td>0.82 (2)</td>
<td>0.75 (2)</td>
<td>0.30 (2)</td>
<td>0.74 (2)</td>
<td>0.11 (2)</td>
<td>0.40 (2)</td>
<td>Humid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.91</td>
<td></td>
<td>Decreasing</td>
</tr>
<tr>
<td>Indus River</td>
<td>0.30 (1)</td>
<td>0.11 (1)</td>
<td>0.19 (3)</td>
<td>0.37 (3)</td>
<td>0.15 (3)</td>
<td>0.34 (3)</td>
<td>Arid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.16</td>
<td></td>
<td>Decreasing</td>
</tr>
<tr>
<td>Amazon</td>
<td>0.88 (2)</td>
<td>0.82 (2)</td>
<td>0.08 (2)</td>
<td>0.12 (2)</td>
<td>0.13 (2)</td>
<td>0.33 (2)</td>
<td>Humid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.99</td>
<td></td>
<td>Stable</td>
</tr>
<tr>
<td>Guarani</td>
<td>0.50 (3)</td>
<td>0.48 (3)</td>
<td>0.42 (3)</td>
<td>0.78 (3)</td>
<td>0.01 (3)</td>
<td>0.26 (3)</td>
<td>Humid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.90</td>
<td></td>
<td>Increasing</td>
</tr>
<tr>
<td>Ganges-Brahmaputra</td>
<td>0.75 (2)</td>
<td>0.69 (2)</td>
<td>0.06 (2)</td>
<td>0.03 (2)</td>
<td>0.03 (2)</td>
<td>0.02 (2)</td>
<td>Humid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.86</td>
<td></td>
<td>Decreasing</td>
</tr>
<tr>
<td>Canning</td>
<td>0.35 (2)</td>
<td>0.19 (2)</td>
<td>0.15 (3)</td>
<td>0.26 (3)</td>
<td>-0.15 (3)</td>
<td>-0.02 (3)</td>
<td>Arid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.13</td>
<td></td>
<td>Decreasing</td>
</tr>
<tr>
<td>Indus River post '08</td>
<td>0.42 (1)</td>
<td>0.15 (1)</td>
<td>0.21 (3)</td>
<td>0.73 (3)</td>
<td>0.34 (3)</td>
<td>0.89 (3)</td>
<td>Arid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.16</td>
<td></td>
<td>Decreasing</td>
</tr>
<tr>
<td>Canning post '06</td>
<td>0.41 (2)</td>
<td>0.24 (2)</td>
<td>0.22 (3)</td>
<td>0.61 (3)</td>
<td>-0.02 (3)</td>
<td>0.24 (3)</td>
<td>Arid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.13</td>
<td></td>
<td>Decreasing</td>
</tr>
</tbody>
</table>

340 Table 3: Summary Table of Results from Monthly & Annual Time Series & Aridity Datasets.  
Summary of all correlation results from time series datasets [Pearson Correlation Coefficient & (lag in months)] and the aridity indices derived from the CGIAR-CSI Global-Aridity dataset (Trabucco and Zomer, 2019). ∆GWS trend over SRP also shown. Results in italics fall below the t-test threshold. Aquifers are ranked in order of Pearson Correlation Coefficient for Annual ∫PCPA vs ∆GWS. For each Aquifer system the strongest ∆GWS correlation with PCP or PCPA is shown in bold. Truncated time series results shown for 2 systems.
Figure 2: Monthly $\Delta$TWS & $\Delta$GWS vs PCP and Annual $\Delta$GWS vs $\int$PCPA Time Series for each of the dryland climate zone aquifer systems, as labelled. Systems are ordered by decreasing PCC for annual $\Delta$GWS vs $\int$PCPA. All time series are plotted to the aquifer system lag as set out in Table 3, where $\Delta$TWS ($\Delta$GWS) lags PCP ($\int$PCPA) by the specified number of months. Y-axis units are Equivalent Water Height (EWH) in cm. Note the variation in the y-axis scales. 7 of the annual $\int$PCPA data series have been scaled x10 for clarity, where indicated.

Figure 3: Monthly $\Delta$TWS & $\Delta$GWS vs PCP and Annual $\Delta$GWS vs $\int$PCPA Time Series for each of the humid climate zone aquifer systems, as labelled. Systems are ordered by decreasing PCC for annual $\Delta$GWS vs $\int$PCPA. All time series are plotted to the aquifer system lag as set out in Table 3, where $\Delta$TWS lags PCP by the specified number of months. Y-axis units are Equivalent Water Height (EWH) in cm. Note the variation in the y-axis scales. Congo Basin annual $\int$PCPA data series has been scaled x10 for clarity.
GRT, shown in Figure 4, is a measure of the time it takes for an aquifer system to equilibrate after a change in boundary conditions, as discussed above. For the 14 studied aquifers, it extends from centennial to millennial timescales as indicated from median values reported in Tables 4 and S1. For humid aquifers, GRT ranges from 100 to 350 years whereas for dryland systems GRT then escalates to values well in excess of 1,000 years for semi-arid and arid basins; the sub-humid North China Plains Aquifer has a GRT of ~550 years. This order of magnitude point of transition can be identified as the threshold between sensitive (rapid) and insensitive (slow) aquifer response times (Cuthbert et al., 2019a), which show a broad global relationship with aridity. This observation helps to explain groundwater storage responses to climate variability through the memory of the aquifer system defined by both physical characteristics and geographical location. The role of HM is discussed further in section 4.1.

<table>
<thead>
<tr>
<th>Aquifer System</th>
<th>Aridity Classification</th>
<th>Aridity Index</th>
<th>Annual ∫PCPA vs ∆GWS [PCC] (lag in months)</th>
<th>GRT: log (GRT) [GRT in yrs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indus River post '08 Arid</td>
<td>0.16</td>
<td>0.89 (3)</td>
<td>3.96</td>
<td></td>
</tr>
<tr>
<td>Upper Kalahari Semi-Arid</td>
<td>0.42</td>
<td>0.88 (2)</td>
<td>2.95</td>
<td></td>
</tr>
<tr>
<td>Karoo Semi-Arid</td>
<td>0.28</td>
<td>0.88 (7)</td>
<td>5.74</td>
<td></td>
</tr>
<tr>
<td>Senegal Semi-Arid</td>
<td>0.20</td>
<td>0.87 (2)</td>
<td>5.70</td>
<td></td>
</tr>
<tr>
<td>California Central Valley Semi-Arid</td>
<td>0.22</td>
<td>0.84 (2)</td>
<td>3.01</td>
<td></td>
</tr>
<tr>
<td>Great Artesian Arid</td>
<td>0.18</td>
<td>0.80 (2)</td>
<td>6.33</td>
<td></td>
</tr>
<tr>
<td>North China Plains Dry Sub-Humid</td>
<td>0.57</td>
<td>0.80 (2)</td>
<td>2.74</td>
<td></td>
</tr>
<tr>
<td>Umm Ruwaba Semi-Arid</td>
<td>0.33</td>
<td>0.64 (2)</td>
<td>4.42</td>
<td></td>
</tr>
<tr>
<td>Congo Humid</td>
<td>1.22</td>
<td>0.62 (3)</td>
<td>2.12</td>
<td></td>
</tr>
<tr>
<td>Maranhao Humid</td>
<td>0.91</td>
<td>0.40 (2)</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td>Indus River Arid</td>
<td>0.16</td>
<td>0.34 (3)</td>
<td>3.96</td>
<td></td>
</tr>
<tr>
<td>Amazon Humid</td>
<td>1.99</td>
<td>0.33 (2)</td>
<td>2.03</td>
<td></td>
</tr>
<tr>
<td>Guarani Humid</td>
<td>0.90</td>
<td>0.26 (3)</td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>Ganges-Brahmaputra Humid</td>
<td>0.86</td>
<td>0.01 (2)</td>
<td>2.10</td>
<td></td>
</tr>
<tr>
<td>Canning Arid</td>
<td>0.13</td>
<td>-0.01 (3)</td>
<td>6.46</td>
<td></td>
</tr>
</tbody>
</table>

**Table 4:** Relationship between Aridity Index, Climate and Regional-Scale Hydrogeology: Data linking climate and regional-scale hydrogeology to GW dynamics. (Italicised results fall below t-test threshold.)
Presented results represent the outcome of a detailed analysis of the available datasets and, as such, contain important assumptions that need to be acknowledged here. Firstly, the allocation of lag time has been done on a ‘best-fit to the ∆TWS data’ basis. It is therefore not derived from analysis of intrinsic physical characteristics of the aquifer systems but is consistent with the range of theoretical values derived from hydrodynamic first principles that anticipate a maximum lag time of 3 months for systems with a large GRT (Townley, 1995), as has been observed by Ahmed et al. (2011). Time lags have been tested for consistency through alignment of specific events in the various time series (Storch and Zwiers, 2001). The evident anomaly of a 7-month lag time for the Karoo Basin is discussed in the SI. Secondly, the restricted duration of the GRACE dataset should be acknowledged, particularly with regard to the annual time series. In mitigation, statistical significance appears to be robust when tested (Zwiers and von Storch, 1995) and the use of PCPA and JPCPA datasets is designed to minimise the effect of seasonal climate and short-term trends in ∆GWS (Craddock, 1965). Thirdly, the use of Eq. (3) to derive ∆GWS from GRACE ∆TWS data represents a temporal and spatial approximation in representing sub-surface hydrological processes. Simply put, all water below the soil zone neither necessarily comprises GWS nor will it all eventually reach GWS due to lateral flow processes. However, on the scale of the aquifer systems considered here, the use of Eq. (3) is a reasonable approximation (de Vries and Simmers, 2002).
4.0. Discussion:

4.1. Role of Hydraulic Memory (HM):

A key finding of this study is that GRACE-derived ΔGWS correlates most strongly with annual JPCPA for large-scale aquifers in dryland environments of the tropics and sub-tropics whereas GRACE-derived ΔGWS correlates most strongly with monthly PCP in humid environments at these latitudes. Further, we show that there is correspondence between the annual JPCPA vs ΔGWS correlations and GRTs of large-scale aquifer systems (Table 4); the latter is a measure derived in accordance with Eq. (4) (Cuthbert et al., 2019a). HM ultimately derives from the physical properties of the saturated portion of the aquifer system (Townley, 1995) and system memory as measured by Eq. (5) is representative of the physical properties of an aquifer system and its climate. Long and Mahler (2013), for example, used a total of 16 metrics to describe particular North American Karst aquifer systems in their IRF (θ in Eq. (5)). In contrast, von Asmuth and Knotters (2004) used 4 parameters to describe groundwater dynamics in their transfer function that they argue represents a more accurate description of the physical system than previously used parametric methods. Further, their description of groundwater dynamics is capable of accommodating non-stationary elements such as climate change and groundwater abstraction (von Asmuth and Knotters, 2004). HM as measured by Eq. (5) is therefore representative of both spatial and temporal variability in aquifer systems but HM itself can vary spatio-temporally. Indeed the response time to a given boundary change can vary according to the physical circumstances, with persistence lasting from months to hundreds of thousands of years (Cuthbert et al., 2019a).

In this study, the GRACE dataset is not long enough to allow detailed IRF modelling of aquifer systems based on ΔGWS data, which would require an observational record longer than the system memory (Long and Mahler, 2013). An extended GRACE series together with reduced uncertainty in the permeability dataset from which GRT is derived, may generate closer numerical matches between GRT (Eq. (4)) and HM as measured by the method of this study (Eq. (5)). Nevertheless, we show that aquifer responses to anomalous precipitation, discussed below, exhibit long HM in dryland environments and relatively short HM in humid environments. The correspondence with GRT extends the classification to two broad categories: dryland environment/long HM/slow GRT and humid environment/short HM/rapid GRT. Note that these categories represent a simplification of the correspondence between HM derived from the study datasets and GRT, which in fact exhibits a spectrum in which Umm Ruwaba (dryland), Congo Basin...
and Maranhao (both humid) occupy an intermediate position in terms of the correlation between $\Delta$GWS and annual $\int$PCPA, as can be seen from Table 3. Aquifers in humid environments, with exception of the Congo Basin, generally exhibit less HM in this study than expected from GRT values. These humid aquifers, as can be seen from Figure 4, have some of their area with GRTs in the order of years to tens of years, perhaps meaning that a disproportionate amount of groundwater processes may be moving through these lower GRT areas. This may explain why humid regions have less HM overall than is implied by their median GRT.

4.2 Aquifer Responses to Anomalous Precipitation:

The annual time series of $\Delta$GWS vs $\int$PCPA for each aquifer have been examined to identify years in which the maximum annual increase in $\Delta$GWS occurred, as identified by the steepest positive gradient of the $\Delta$GWS line (Table 5). These years of extreme recharge, inferred from the increase in $\Delta$GWS, are then further categorised by whether: (1) prior to the event $\int$PCPA is negative, indicating anomalously dry conditions when soil moisture deficits (SMD) are likely to be widespread; and (2) the $\int$PCPA is concurrently shifting from a negative to positive cumulative anomaly, associated with an extreme rainfall event. Finally, the NINO3.4 index for 2002-2016 (Huang et al., 2015) has been examined (KNMI Climate Explorer, 2018) to indicate the state of ENSO, the dominant control on equatorial precipitation, at the time of the recharge. Nearly all recharge events in dryland aquifer systems take place at a time of negative $\int$PCPA (likely SMD), with most coinciding with extreme rainfall as recently observed in a pan-African study by Cuthbert et al., (2019b). Extreme recharge events also generally coincide with El Niño/La Niña events indicating an association with large-scale modes of climate variability identified previously in tropical Africa (Kolusu et al., 2019; Taylor et al., 2013b). In contrast, extreme recharge in humid aquifer systems is consistently associated with neither negative $\int$PCPA (likely SMD), nor anomalous rainfall, though the latter is correlated with ENSO state.
Table 5: Aquifer systems grouped by AI – Dry (Upper) and Humid (Lower). Extreme recharge years identified from annual time series by slope of ∆GWS plotted line. SMD status inferred by prior negative JPCPA and annual JPCPA phase change also derived from the same time series. ENSO state from NINO3.4 Index (Huang et al., 2015).

Anomalous Trends in Groundwater Storage:

Over the SRP determined by the availability of GRACE data, six aquifer systems show a net decline in groundwater storage: California Central Valley, North China Plains, Maranhao, Ganges, Indus & Canning Basins. Of these, two aquifer systems (Indus River and Canning Basins) do not show a strong correlation between ∆GWS and any of the precipitation data series. Table 4 shows that these same two aquifers do not fit the general classification of the 14 aquifer systems into either
dryland/slow GRT/long HM or humid/rapid GRT/short HM systems. These anomalous characteristics may reflect groundwater storage decline through the escalation of groundwater abstraction referenced previously (Wada et al., 2014) and this hypothesis was tested through further analysis as follows below and in further detail in the SI.

The Indus River and Canning Basins superficially present similar stories of groundwater storage decline yet contextual analysis of their respective GRACE/CLM ∆GWS datasets reveals two quite different realities. The Indus River Basin supports a population of ~210 million people (Immerzeel et al., 2010) and its hydrology is strongly influenced by water supply from upstream of the basin, much of it intended for irrigation (Immerzeel et al., 2010). Surface water is augmented by groundwater abstraction, which supplies ~31% of the total irrigation demand, but it has been estimated that ~84% of the groundwater abstracted returns to the aquifer system as leakage from canals and intensively irrigated fields (Cheema et al., 2014). A net calculation of these effects on ∆GWS, which is detailed in the SI, shows that the underlying climate-groundwater dynamics are consistent with the GRT derived from the regional-scale hydrogeology of the aquifer system. In contrast, the Canning Basin is sparsely populated and is not a centre of agriculture (Richey et al., 2015). It is, however, a source of freshwater for iron-ore extraction in adjacent areas (Western Australia Department of Water, 2011) and very little of the abstracted groundwater is returned to the aquifer system as its use in mining causes it to become contaminated (Western Australia Department of Water, 2013). This contaminated groundwater is subsequently disposed in the sea or evaporation ponds (Prosser et al., 2011). The Canning Basin has a very slow GRT and, situated in an arid environment, is subject to low rates of groundwater recharge so that the physically sustainable rate of groundwater abstraction is expected to be very low (Scanlon et al., 2006). The analysis of the Indus and Canning Basins is evidence of how groundwater depletion, which has been reported elsewhere (e.g. Famiglietti, 2014; Rodell et al., 2009), impacts relationships between precipitation and ∆GWS.

5.0 Conclusions:

Strong correlations are found between GRACE-derived annual ∆GWS and ∫PCPA for large-scale aquifer systems in dryland environments. This correlation is much weaker for large-scale aquifer systems in humid zones where a stronger correlation generally exists between monthly ∆GWS and monthly PCP. We propose that the correlation between annual ∆GWS and ∫PCPA demonstrates the existence of hydraulic memory which is central to large-scale climate-groundwater dynamics. For the studied aquifer systems, the measure of correlation between annual ∆GWS and ∫PCPA also shows
very good correspondence with the groundwater response time, a measure of the hydraulic memory of an aquifer system derived from its regional-scale hydrogeological and catchment properties (Cuthbert et al., 2019a). The 14 aquifer systems can be broadly categorised into two groups, with each group listed in ascending order of groundwater response time:

- **Group 1: Dryland/Long HM/slow GRT:** North China Plains, Upper Kalahari, California Central Valley, Indus River, Umm Ruwaba, Senegal-Mauritanian, Karoo, Great Artesian & [Canning] Basins
- **Group 2: Humid/Short HM/rapid GRT:** Amazon, Ganges, Congo, Guarani, & Maranhao Basins

Aquifer systems in Group 1 may be less sensitive to seasonal climate variability but also vulnerable to long-term trends from which they will be slow to recover. In contrast, aquifers in Group 2 may be more sensitive to seasonal climate disturbances such as ENSO-related drought but may also be relatively quick to recover. These characteristics can be applied to anticipate the groundwater response to present conditions and to future pressures that can be expected from anthropogenic climate change (Taylor et al., 2013a). The results from the analysis of GRACE data are reconciled to regional-scale hydrogeological conditions, which gives confidence in their validity (Beven and Germann, 2013), albeit with the caveat regarding the uncertainties inherent in all the datasets used (Wilks, 2016).

The new GRACE follow on (GRACE-FO) project has now been launched (Frappart and Ramillien, 2018; Tapley et al., 2019), providing an opportunity to augment the existing GRACE ∆TWS dataset without recourse to modelling (Ahmed et al., 2019) and to give greater certainty in linking climate-groundwater dynamics to decadal and longer timescale climate systems including the Pacific Decadal Oscillation and Atlantic Multidecadal Oscillation (Wunsch, 1999). An extended dataset will improve the calibration of HM as it relates to specific aquifer systems, providing a robust context for monitoring AGWS, including groundwater decline, in real time and protecting fundamentally important groundwater resources.

**Competing Interests:** The authors declare no competing interests.

**Authors' Contributions:** SO led the analysis of datasets originally compiled by MS and MC, supplemented by datasets developed by SO; RT, CB and MS contributed to the original design of the study with key modifications made by SO; SO drafted the manuscript with input from RT; all authors contributed to, and commented on, revisions to the submitted manuscript.
References:


https://doi.org/10.1029/2011WR010993


https://doi.org/10.1175/JHM-D-13-0190.1


Western Australia Department of Water, 2013. Western Australian water in mining guideline.

Western Australia Department of Water, 2011. Capacity of water resources in the Mid west to meet mining and industrial growth: a status report. Dept. of Water, Perth, W.A.


https://doi.org/10.1029/2006WR005374


Data Availability

Supplementary information is available for this paper as a single PDF file. Data generated and used in this study can be made available upon request to the corresponding author.

https://doi.org/10.5194/esd-2019-83
Preprint. Discussion started: 16 January 2020
© Author(s) 2020. CC BY 4.0 License.