Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.351 IF 4.351
  • IF 5-year value: 5.124 IF 5-year
    5.124
  • CiteScore value: 4.44 CiteScore
    4.44
  • SNIP value: 1.250 SNIP 1.250
  • IPP value: 4.10 IPP 4.10
  • SJR value: 2.203 SJR 2.203
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 29 Scimago H
    index 29
  • h5-index value: 31 h5-index 31
Discussion papers
https://doi.org/10.5194/esd-2019-72
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-2019-72
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 29 Nov 2019

Submitted as: research article | 29 Nov 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Earth System Dynamics (ESD).

The Pacific Ocean heat engine: global climate's regulator

Roger N. Jones and James H. Ricketts Roger N. Jones and James H. Ricketts
  • Institute of Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Victoria 8001, Australia

Abstract. Climate change is routinely represented as a smoothly changing signal surrounded by statistical noise. However, on decadal timescales, warming proceeds as a sequence of steady-state regimes punctuated by abrupt shifts. Here we present evidence that this process is regulated by a heat engine spanning the tropical Pacific Ocean. The eastern-central Pacific maintains steady-state conditions, collecting heat and delivering it to the Western Pacific warm pool. This acts as distributor, transporting heat upwards and to the poles. The heat engine is networked within the climate system, linking different oscillations and circulations as heat energy is dissipated. The process is self-regulating. Steady-state regimes will persist until they become unstable and need more or less power depending on the direction of forcing. Under greenhouse gas forcing, shifts initiated within the heat engine propagate broadly across the shallow ocean, followed by warming over land and at higher latitudes. The heat engine was in free mode during the early 20th century, dominated by decadal variability. From the 1960s, it switched into forced mode, initiating a stepladder-like pattern of warming in regional and global climate. The most recent shift commenced in the warm pool in December 2012, ending the so-called hiatus (1997–2013). During 2014–15, surface temperatures warmed abruptly by ~ 0.25 °C globally and > 0.5 °C over northern hemisphere land and high latitudes. With increasing forcing, the heat engine will shift more frequently. Rapid decreases in greenhouse gas emissions will slow the process and potentially, could stabilise it. Managing unavoidable change requires developing the capacity to predict shifts in advance. Planning for rapid changes in extreme events is an urgent priority.

Roger N. Jones and James H. Ricketts
Interactive discussion
Status: open (until 14 Jan 2020)
Status: open (until 14 Jan 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Roger N. Jones and James H. Ricketts
Roger N. Jones and James H. Ricketts
Viewed  
Total article views: 264 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
202 61 1 264 18 0 2
  • HTML: 202
  • PDF: 61
  • XML: 1
  • Total: 264
  • Supplement: 18
  • BibTeX: 0
  • EndNote: 2
Views and downloads (calculated since 29 Nov 2019)
Cumulative views and downloads (calculated since 29 Nov 2019)
Viewed (geographical distribution)  
Total article views: 221 (including HTML, PDF, and XML) Thereof 213 with geography defined and 8 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 08 Dec 2019
Publications Copernicus
Download
Short summary
The tropical Pacific Ocean maintains a self-regulating heat storage and release system that distributes heat to the top of the atmosphere and poles, acting like a heat engine with gears. It is normally in steady state but when overloaded by increasing heat, it shifts gear. The oceans, then the atmosphere warm in a series of regionally and globally synchronous step changes that shift climate. This results in infrequent but rapid warming episodes that rapidly change the risk of climate extremes.
The tropical Pacific Ocean maintains a self-regulating heat storage and release system that...
Citation