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S.1 Updating the Forcing Series

We update the forcing series of Hansen et al. (2017) to 2016 as follows. We regress the first three series, CO2, CH4, N2O, (in

W/m2) onto the natural log of the series given by NOAA1 in ppm for carbon dioxide and in ppb for methane and nitrous oxide.

We then predict the 2016 forcings using the natural log of the 2016 NOAA data.

In contrast, forcing from CFCs is changing very slowly, so we set 2016 to be the average of 2004-2015. We take the same5

moving average approach to estimate the 2016 forcings for ozone, tropospheric aerosols & surface albedo, and volcanoes as

for CFCs. Volcanic activity over this period was not trivial, as noted by Vernier et al. (2011) and Neely et al. (2013), but neither

are there any major eruptions on the order of Mount Pinatubo in 1991. Finally, solar data in 2016 is updated by imposing the

2015-16 percent change from NASA.2

S.2 Estimating the Oceanic Multidecadal Oscillation10

Ocean cycles in mean temperature data – and the AMO in particular – have been estimated a number of ways in the literature.

A key problem in estimating the cycle is removing the long-run trend due to global climate change. A common method for

this purpose is linear detrending of GMT (Enfield et al., 2001; Wyatt and Curry, 2014), although linear detrending has been

criticized for this purpose by the IPCC (Bindoff et al., 2013). Approaches using stochastic trends include those of Trenberth

and Shea (2006), who use temperatures in other oceans to detrend the Atlantic, and Lenton et al. (2017), who use global mean15

temperature to detrend regions in the Atlantic and Pacific.

Another problem that we must avoid is over-fitting the statistical model in equation (2) in the paper. As an example of over-

fitting, consider 2016, which was an unusually warm El Niño year. A variable constructed by simply detrending sea surface

temperatures would have a particularly high value for 2016. Regressing GMT onto detrended GMT or sea surface temperatures

1Downloaded from www.columbia.edu/~mhs119/GHGs on May 15, 2017.
2Downloaded from solarscience.msfc.nasa.gov on May 15, 2017.
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Figure S.1. Heterogeneous Oceanic Temperature Trends. Fitted anomalies from regressing average temperature anomalies of five ocean

regions onto a constant and WMGHGs.

would show a superficially good fit, in the sense that the model could not distinguish between secular cyclical variability and

idiosyncratic noise.

Our approach handles these two problems by filtering out both long-run and short-run information from the time series of

temperature anomaly distributions. We decompose the temperature anomaly Ta (see Section C) into a long-run trend component

Tt, a stationary multidecadally oscillating component Ts, and a noise component Tn, so that Ta = Tt +Ts +Tn. Similar to the5

AMO, we refer to Ts as the Oceanic Multidecadal Oscillation (OMO).

In order to estimate Ts, we first divide up the HadSST3 data into oceans: North Atlantic, South Atlantic, North Pacific, South

Pacific, Indian, defined according to NOAA.3 We then calculate the mean for each ocean at each year and then detrend those

means. Rather than using a linear time trend or using the trends from other oceans, we regress these means into a constant

and WMGHGs, reflecting models in the literature, like that in our equation (2), which assume a long-run relationship between10

temperature and WMGHGs. Doing so for each ocean separately allows for heterogeneous local climate sensitivity – i.e., for

the sea surface temperatures in different oceans to be influenced by WMGHG differently over the long term.

3See www.nodc.noaa.gov/woce/woce_v3/wocedata_1/woce-uot/summary/bound.htm.
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Figure S.2. Unsmoothed and Smoothed Anomaly Distributions Over Time. Top: Unsmoothed anomaly distribution from heterogeneously

detrended sea surface temperature anomalies. Bottom: Smoothed anomaly distribution from fitting the unsmoothed distribution to a sine

function, used to represent the OMO.

Figure S.1 shows the predicted temperature trends from these regressions. Note that the Pacific and Indian Oceans share

a common warming trend, while those of the Atlantic are quite a bit different. The Atlantic is warming faster than the other

oceans, with the South Atlantic catching up to the Indian and Pacific from a colder starting point and the North Atlantic

becoming increasingly warmer.
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Linear/Homog Trenberth-Shea WMGHG/Heterog

est. s.e. est. s.e. est. s.e.

θ1 0.13 0.11 0.12 0.13 0.13 0.11

θ2 14.66 2.71 13.53 4.99 13.75 2.95

θ3 −0.11 1.61 0.28 3.47 −0.21 1.67

θ4 −0.03 0.08 −0.03 0.10 −0.00 0.08

Table S.1. Periodic Function Estimation Results. Results from fitting the WMGHG/heterogeneously detrended OMO, lin-

early/homogeneously detrended OMO, and Trenberth-Shea (2006) AMO to the nonlinear regression in (S.1).

In order to detrend the distribution of sea surface temperatures, we simply subtract the estimated trend for each ocean from

the series of temperatures in each of the 5◦ by 5◦ boxes in that ocean. A standard nonparametric density estimation technique

(Gaussian kernel with Silverman bandwidth) is used to estimate the density fs+n
t (r) of heterogeneously detrended sea surface

temperature anomalies. Detrending removes Tt, so that fs+n
t (r) reflects the density of Ts +Tn. We omit 0.5% of the outliers

in each tail, which we believe is an adequate threshold to ameliorate well-known boundary problems from kernel density5

estimation without substantively altering the moments of the distribution. Figure S.2 (top panel) shows the density fs+n
t (r) of

the stationary temperature distribution for each year.

Next, we smooth fs+n
t (r) by removing short-run noise Tn. To do so, we first calculate the spatial mean

∫ +

− rf
s+n
t (r)dr,

which could be referred to as the heterogeneously detrended oceanic mean temperature. We fit the result to a single sine

function, estimating10

+∫
−

rfs+n
t (r)dr = θ1 sin(θ2(t/T ) + θ3) + θ4 + et, (S.1)

using nonlinear least squares. We abbreviate the endpoints of the integral simply by − for r_ and + for r+ throughout the

SOM.

Nonlinear least squares estimates a periodic function with an amplitude of 0.130◦C, a vertical shift of −0.000◦C (nearly

zero), a period given by 2π/13.75×T ' 76 years, and a phase shift given by 0.21/13.75×T ' 3 years (Table S.1). This15

period is roughly consistent with the Wyatt-Curry “stadium wave” with a half-period cooling regime of 31-38 years from about

1940 to about 1975. The years over the sample in which the OMO has a neutral effect – neither cooling nor warming – are

(approximately) 1852, 1928, and 2004.

As a comparison, Table S.1 and Figure S.3 compare the OMO and periodic function estimated in this manner with an OMO

and periodic function estimated using linear detrending and with the AMO signal of Trenberth and Shea (2006)4 and similarly20

estimated periodic function. The linear detrending method estimates a shorter period of 72 years, while the Trenberth-Shea

AMO signal has a longer period of 78 years. Although the AMO signal has a longer period, the phase shift is negative, so that

4Downloaded from www.cgd.ucar.edu/cas/catalog/climind/AMO.html on July 17, 2017.
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Figure S.3. Mean and Fitted Oscillations. Mean and fitted oscillations using a single linear trend, using heterogeneous WMGHG detrend-

ing, and using data from Trenberth and Shea (2006).

the next peak occurs just after the end of the sample. In contrast, the linear detrending method shows a peak in about 2011 – in

stark contrast to the recent high temperatures in 2015 and 2016.

Now, in order to estimate the distribution of Ts from that of Ts +Tn, we construct a distribution that is changing only in

mean over time. To that end, we first create a measure of the average distribution fn(r) of “de-cycled” anomalies Tn with

trend and periodic function removed. The density fs+n
t (r) is already detrended, but in order to remove the multidecadal cycle,5

we change the support by subtracting the heterogeneously detrended oceanic mean temperature Ts = θ̂1 sin(θ̂2(t/T )+ θ̂3)+ θ̂4

estimated from equation (S.1) from each temperature anomaly in each year. For example, the density function estimated for a

temperature anomaly of 1◦C in year t becomes the “de-cycled” density function estimate at (1−Ts)◦C and, most importantly,

the density at T ◦s C becomes 0◦C. We then average the densities at each temperature anomaly r across the sample, 1850-2016,

obtaining a “de-cycled” density fn(r).10

Finally, we create a series of estimated densities ft(r), smoothed versions of fs+n
t (r). In order to do so, we reverse the

procedure described above by adding the heterogeneously detrended oceanic mean temperature Ts to fn(r) in order change

the support back to r. We then remove outlying anomalies outside the original support. In this way, we estimate the smoothed

density ft(r) of the OMO, displayed in the bottom panel of Figure S.2. The methodology clearly extracts a density that (a)
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appears to be stationary, devoid of a long-run stochastic or deterministic trend from warming, (b) appears to be smooth, devoid

of idiosyncratic noise, and (c) appears to capture the multidecadal cycle.

S.3 Energy Balance Model

We define location ` ∈G= L∪O where the setG is all locations on the globe and L andO are sets of land and ocean locations.

Location ` may be given as a latitude-longitude pair, in which case the integrals over ` below become double integrals over5

latitude and longitude. Letting the index j =G,L,O, nj =
∫
j
dµ` with counting measure µ denotes the number of locations in

each set.

Adapting the energy balance model (EBM) of North (1975) and North and Cahalan (1981) to accommodate external forcing,

we may write

C(`)dTt(`) =QS(`)a(`)− (A+BTt(`)) +D(`,Tt(`)) +ht(`) + εt(`), (S.2)10

where C is heat capacity, Tt is temperature at time t, Q is the solar constant, S is solar irradiance, a is co-albedo, A+BTt

is emitted energy, D is a linear-in-temperature approximation to the heat diffusion term in their model, ht is radiative forcing,

and εt is stochastic forcing. The stochastic forcing term is assumed by North et al. (1981) to be idiosyncratic, but we do not

require this assumption.5,6

Historical temperature data sets typically express temperature in terms of anomalies from a base period in order to ameliorate15

well-known measurement errors. Accordingly, we decompose temperature as temperature during a base period b plus the

temperature anomaly, Tt = Tb +T a
t . The two forcing components may also be decomposed into base plus anomaly, expressed

as ht = hb +hat and εt = εb + εat . Adapting the EBM in (S.2) to accommodate temperature anomalies allows

(C +B)T a
t −CT a

t−1 =D(`,T a
t ) +hat + εat , (S.3)

by subtracting C(`)dTb(`) = 0 from both sides, discretizing the derivative to a unit increment, and suppressing the location20

argument for now.

Because C,B > 0, π = C/(C +B)< 1, so that the autoregressive component may be inverted. Doing so yields

T a
t = (C +B)−1

∞∑
i=0

πi[D(`,T a
t−i) +hat−i + εat−i]'

1

B
[D(`,T a

t ) +hat + εat ],

where the approximation results from a Beveridge-Nelson-type decomposition (see Phillips and Solo, 1992). The approxima-

tion is more valid when the data are cointegrated or cotrending, in which case the neglected terms have a lower asymptotic25

order.
5North and Cahalan (1981) assume co-albedo to be a function of temperature as well as latitude, but more recent studies show that co-albedo is effectively

constant in temperature at a given latitude (Stephens et al., 2015; Stevens and Schwartz, 2012).
6Alexeev et al. (2005) note the effectiveness of modeling the diffusion coefficient D as a function of temperature in order to capture polar amplification,

which is not our aim.
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What does the stochastic forcing term εat represent? Aside from noisy measurement of the data, it also accounts for otherwise

missing components of temperature changes. Most notably missing are natural variability, such as changes in the ocean heat

uptake, and other natural cycles, such as ENSO. As proxies, we employ the OMO, given by T s
t (`), and the SOI often used as

a proxy for ENSO, given by St. Timmermann et al. (1999) note the possibility that external forcings may correlate with more

frequent and/or severe ENSO cycles. By including the SOI in the model, we are implicitly assuming that the correlation is5

reflected in the SOI.

An alternative way to capture natural variability might be to allow for separate meridional ocean transport, along the lines of

Rose and Marshall (2009), which could likely be accomplished along the lines of Pretis (2015) using a model that cointegrates

surface temperature with deep ocean heat content. However, keeping in mind that our aim is to model hiatus periods that may

be sparsely distributed over the historical record, the short time span over which ocean heat content is measured precludes this10

approach.

In such a model, surface temperatures, deep ocean heat content, and forcings share a single stochastic trend, so that the

marginal value of the deep ocean heat content relative to forcings is natural variability. Hence, omitting deep ocean heat

content does not cause a spurious regression, but rather relegates this stationary variability to the error term. Our proxies, the

OMO and SOI, allow us to explicitly model the primary multidecadal and interannual sources of this variability.15

Because the EBM does not explicitly include these indicators, it is natural to model them nonparametrically. To this end, we

specify the model as

Ta = α0 +α1ht(`) +α1D(`,Ta(`)) + b(T s
t (`)) + c(St) + ηt(`), (S.4)

where

b(T s
t (`)) =


∑mT

i=1 γ
T
i bi(T

s
t (`)) for ` ∈O

0 for ` ∈ L
20

c(St) =
∑mS

i=1
γSi ci(St)

are two generic series expansions intended to capture possibly nonlinear effects of these indicators. The OMO captures vari-

ability over the ocean, so this component is set to zero over land. The SOI is a single indicator. The last term ηt(`) contains

the original stochastic forcings and their lags and an allowance for finite-order approximation error of the two expansions. We

may think of this term representing residual forcings, and it almost certainly exhibits temporal correlation.25

Now we aggregate across locations to obtain a global model. To this end, let O(Ts) = {` ∈O : Ts(`) = Ts} be a subset of

O over which the Ts(`) has the same numerical value, let nO(Ts) =
∫
O(Ts)

dµ` denote the number of locations in O(Ts) that

have the value Ts, and let f be the probability density function of Ts(`) in O with support [r−, r+]. Note that

+∫
−

b(r)f(r)ds=

+∫
−

n−1O(Ts)

∫
O(Ts)

b(Ts(`))dµ`

f(Ts)dTs = n−1O

∫
O

b(Ts(`))dµ`,

which means we can aggregate all of the functions b across ocean locations or we can aggregate all of the functions b with30

the same observed argument and then aggregate them again with weights given by the frequency of each argument. Defining
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Ta = n−1G

∫
G
Ta(`)dµ`, h= n−1G

∫
G
h(`)dµ`, η = n−1G

∫
G
η(`)dµ`, integrating across locations, and noting that the diffusion

term D(`,Ta(`)) is constrained to integrate to zero by the first law yields the EBM in equation (1) in the paper.

S.4 Estimating the Energy Balance Model

We approximate the functions b and c nonparametrically using a series of polynomial and trigonometric functions known as

the flexible Fourier functional form, which Park et al. (2010) analyze using a semiparametric cointegrating regression much5

like ours. This form may be written as

bvj (v) = vj for j = 1, ...,p1

= cos2πkv for j = p1 + 2k− 1 and k = 1, ..., q1

= sin2πkv for j = p1 + 2k and k = 1, ..., q1

and analogously for cvj (v), for v ∈ [0,1]. Using this notation, mT = p1 + 2q1 and mS = p2 + 2q2. It is important that these10

functions are defined over the unit interval, so let bj(r) = (r+− r−)bvj ((r− r−)/(r+− r−)) and cj(S) = (S+−S−)cvj ((S−
S−)/(S+−S−)), where S+ and S− are the maximum and minimum observed SOI. Thus,∫
bj(r)ft(r)dr =

∫
(r+− r−)bvj ((r− r−)/(r+− r−))ft(r)dr

holds, making estimation convenient by simply multiplying bvj by the range of values in the domain of the OMO.

The optimal orders (p1, q1,p2, q2) = (2,0,1,0) – i.e., mT = 2 and mS = 1 – are jointly determined by Schwarz-Bayesian15

and Hannan-Quinn information criteria evaluated using least squares with p1,p2 up to 3 and q1, q2 up to 2. With mS = 1, SOI

enters linearly and the regressor is thus simply (St−S−).7 The results are given in Table S.2.

S.5 Estimation of Uncertainties

S.5.1 Uncertainties from Estimating the OMO

Estimating the OMO relies on a statistical approximation, and we employ a parametric bootstrap strategy similar to that of20

Poppick et al. (2017) to account for uncertainty in estimation. Specifically, after fitting the periodic function in (S.1), we fit

the residuals to an AR(1) and redraw from the residuals of the fitted AR(1). We re-create the regressand using a re-created

AR(1) error with fitted autoregressive parameter (0.49). We then re-estimate all the parameters of the nonlinear regression. We

conduct 999 bootstrap replications in this manner, and the sample paths plotted in Figure 2 in the paper reflect the periodic

functions with 0.05 and 0.95 quantiles of θ2 in (S.1), which determines the period.25

7All models are expected to be cointegrated, because we simply add stationary series to the model with (p1, q1,p2, q2) = 0, which we found to be

stationary (see footnote 1 in the paper). More formally, we run residual-based augmented Dickey-Fuller tests which strongly rejected no cointegration up to

four lags. In addition, variable addition tests proposed by Park et al. (2010) with added variables t2 and t3 fail to reject the null of cointegration.
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OLS CCR OLS CCR

est. est. s.e. est. est. s.e.

α0 −0.315 −0.313 0.026 −14.505 −13.968 13.848

α1 0.412 0.430 0.029 0.431 0.439 0.016

α2 0.079 0.081 0.038 0.054 0.055 0.022

γ1 9.463 9.084 10.079

γ2 −8.878 −8.502 10.236

δ1

α0 −0.212 −0.214 0.055 −19.897 −19.446 12.474

α1 0.407 0.423 0.029 0.425 0.431 0.015

α2 0.092 0.094 0.038 0.069 0.069 0.020

γ1 13.440 13.119 9.080

γ2 −12.899 −12.569 9.221

δ1 −0.055 −0.053 0.026 −0.062 −0.061 0.013

Table S.2. EBM Estimation Results. Results from estimating the model in (2) in the paper using least squares (OLS) and asymptotically

normal canonical cointegrating regression estimates (CCR) (Park et al., 2010) with p1 = 0,2, p2 = 0,1, and q1, q2 = 0 in (S.4).

Our bootstrap differs from a typical bootstrap in that we do not re-estimate only the period and restrict the other parameters

to their fitted values. Re-estimating all of the parameters allows uncertainty about the period to be correlated with uncertainty

about the phase shift in particular, because uncertainty in both parameters affects our dating of the function’s optima.

S.5.2 Approximations to Uncertainties in Forcings

Myhre et al. (2013) estimate forcings (in W/m2) with 90% confidence for 2010 as follows: from WMGHGs: 2.83 (2.54 to5

3.12); from ozone: 0.07 (0.02 to 0.12); from tropospheric aerosols & surface albedo: −0.35 (−0.85 to 0.15); and from solar

irradiance: 0.05 (0.00 to 0.10). Volcanic forcings are estimated to be −0.06 (−0.08 to −0.04) over 1999-2002 and −0.11

(−0.15 to −0.08) over 2008-2011. Myhre et al. (2013) state that uncertainty about forcing from WMGHGs is about ±10%,

and indeed this roughly corresponds to the numerical values given for 2010. The numerical values given for volcanic forcings

over the two periods correspond to ±33% within rounding error. If we make a similar assumption regarding the other forcings,10

then uncertainties about forcings from ozone, tropospheric aerosols & surface albedo, and solar are ±70%, ±143%, and

±100% respectively in 2010.

We assume that these percentages are roughly the same each year, as they are for WMGHGs and appear to be for volcanoes.

In this way, we generate intervals for each forcing in each year to be consistent with the given data, in the spirit of Poppick et

al. (2017) but without a bootstrap. This procedure inherently but realistically allows heteroskedasticity, because the uncertainty15

grows as the forcing’s value grows. However, it does not allow for heteroskedasticity due to more precise measurements
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over time, e.g., as noted by Myhre et al. (2013) for solar. We further assume that the uncertainties in the forcings are purely

idiosyncratic in the sense that they are neither time-dependent nor mutually dependent.

Approximating the distributions of these uncertainties by a Gaussian distribution centered at the reported value, we can

estimate the variance by dividing the difference in the quantiles by 2× 1.645 and squaring the result, which reverses the

formula ±1.645
√
var(vt) to calculate 90% intervals from the variance of a mean-zero Gaussian random variable vt. Doing5

so generates a 5× 5 variance/covariance matrix for each time period, with the estimated variance of each of the five forcings

along the main diagonal and zeros elsewhere.

The average of the diagonals, reflecting the variances of the uncertainty for each forcing (WMGHGs, ozone, aerosols, solar,

and volcanic respectively), is estimated to be (0.007, 0.001,0.284,0.002,0.012)′ over 1850-2016 and (0.029,0.003,0.969,0.004,0.000)′

over 1999-2013, the recent fifteen-year hiatus period. As expected, forcings from aerosols are estimated to be the most uncer-10

tain. The uncertainties over the hiatus period are generally larger than those over the whole sample, reflecting the larger

magnitudes of the forcings near the end of the sample. In contrast, volcanic forcings are nearly zero during the hiatus period,

reflecting the absence of a volcanic eruption with a major impact on global climate.

S.5.3 Contribution of Regressor Uncertainty to Coefficient Estimators

Uncertainty in the regressors may be treated as “classical measurement error” in the parlance of the econometrics literature,15

which is known to cause bias in the coefficient estimates. Because we observe forcings with error, we may denote our obser-

vation of forcings by ht = h0t + vt, where h0t = (h01t,h
0
2t)
′, with h01t and h02t denoting respectively the sum of non-volcanic

forcings and volcanic forcing if the forcings could be observed without uncertainty. Similarly, vt = (v1t,v2t)
′ such that v1t and

v2t are respectively the sum of uncertainties about non-volcanic forcings, estimated as described above, and uncertainty about

volcanic forcing. vt has a mean of zero and its components have variances given by σ2
v1,t and σ2

v2,t. The former is the sum of20

the variances of the non-volcanic forcings, as the covariances are assumed to be zero.

In a cointegrating model like ours, bias in the long-run relationship is not hard to fix. In fact, although it was not designed to

do so, the feasible CCR methodology of Park et al. (2010) already takes into account this bias. Using a closely related model,

Miller (2010, Theorem 2) shows the CCR estimator to be consistent, asymptotically normal, and asymptotically unbiased, with

a variance that takes into account the measurement uncertainty.825

S.5.4 Contribution of Uncertainty to Forecasts

Explaining the contributions of the uncertainty to the missing heat of the 1998-2013 episode requires a measure of in-sample

fit of T a
t for some arbitrary time period t= 0, given by T̂ a

0 = h∗′0 α̂+x′0γ̂+w0δ. For simplicity, denote the right-hand side

by z′0π̂ with zt = (h∗′t ,x
′
t,wt)

′ = (1,h1t,h2t,x
′
t,wt)

′ and π = (α′,γ′, δ)′ = (α0,α1,α2,γ
′, δ)′ and let z0t = (1,h01t,h

0
2t,x

′
t,wt)

′

8We do not model uncertainty in measuring temperatures, which is expected to be smaller than uncertainties in the forcings. Also, we do not model the

effect of uncertainty in the volcanic forcings on the coefficient estimate, because the uncertainty is much smaller than the uncertainty for the other forcings –

nearly zero – over the 1998-2013 period.
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and $t = (0,v1t,v2t,0,0), such that zt = z0t +$t. The variance of the uncertainty in T̂ a
0 is given by

var(T̂ a
0 |z00) = z0′0 var(π̂|z00)z00 +var($′0π̂|z00) + 2z0′0 cov(π̂,$′0π̂|z00)

using this notation.

If we could observe z00 , a 90% uncertainty interval for T̂ a
0 would be

z0′0 π̂± 1.645
√
z0′0 var(π̂|z00)z005

from the first term. Instead, rewrite the variance as

var(T̂ a
0 |z00) = z0′0 var(π̂|z00)z00 +var(α̂1|z00)σ̄2

1v +var(α̂2|z00)σ̄2
2v

+
[
2z0′0 cov(π̂,$′0π̂|z00)

]
+
[
var($′0π̂|z00)− (var(α̂1|z00)σ̄2

1v +var(α̂2|z00)σ̄2
2v)
]

where σ̄2
1v and σ̄2

2v are temporal averages that estimate the variances σ2
v1,t and σ2

v2,t at t= 0. Specifically, we use the averages

over 1999-2013 given above, so that σ̄2
2v is effectively zero.10

Ignoring the two terms in brackets and setting σ̄2
2v = 0, a 90% uncertainty interval for T̂ a

0 given by

z′0π̂± 1.645
√
z0′0 var(π̂|z00)z00 +var(α̂1|z00)σ̄2

1v

takes into account uncertainty in the non-volcanic forcings. Because the uncertainty in the regressors is correlated with the

uncertainty in the estimator, the bracketed terms are not zero, but we expect that they will be small.

As with predictions from any linear model, the variance of the out-of-sample conditional forecasts is augmented by the15

estimated variance of the error term ηt. In that case, we drop var(α̂1|z00)σ̄2
1v , because we are conditioning on specific data and

there are no measurement errors, and we use least squares rather than CCR, in order to minimize mean squared forecast error.
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