Journal metrics

Journal metrics

  • IF value: 3.769 IF 3.769
  • IF 5-year value: 4.522 IF 5-year 4.522
  • CiteScore value: 4.14 CiteScore 4.14
  • SNIP value: 1.170 SNIP 1.170
  • SJR value: 2.253 SJR 2.253
  • IPP value: 3.86 IPP 3.86
  • h5-index value: 26 h5-index 26
  • Scimago H index value: 22 Scimago H index 22
Discussion papers | Copyright
https://doi.org/10.5194/esd-2018-30
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 23 May 2018

Research article | 23 May 2018

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Earth System Dynamics (ESD).

Critical Assessment of Geoengineering Strategies using Response Theory

Tamás Bódai1,2, Valerio Lucarini1,2,3, and Frank Lunkeit3 Tamás Bódai et al.
  • 1Centre for the Mathematics of Planet Earth, University of Reading, UK
  • 2Department of Mathematics and Statistics, University of Reading, UK
  • 3CEN, Meteorological Institute, University of Hamburg, Germany

Abstract. We investigate in an intermediate-complexity climate model (I) the applicability of linear response theory to assessing a geoengineering method, and (II) the success of the considered method. The geoengineering problem is framed here as a special optimal control problem, which leads mathematically to the following inverse problem. A given rise in carbon dioxide concentration [CO2] would result in a global climate change with respect to an appropriate ensemble average of the surface air temperature <[Ts]>. We are looking for a suitable modulation of solar forcing which can cancel out the said global change, or modulate it in some other desired fashion. It is rather straightforward to predict this solar forcing, considering an infinite time period, by linear response theory, and we will spell out an iterative procedure suitable for numerical implementation that applies to finite time periods too.

Regarding (I), we find that under geoengineering, i.e. the combined greenhouse and solar forcing, the actual response Δ<[Ts]> asymptotically is not zero, indicating that the linear susceptibility is not determined correctly. This is due to a significant quadratic nonlinearity of the response under system identification achieved by a forced experiment. This nonlinear contribution can in fact be easily removed, which results in much better estimates of the linear susceptibility, and, in turn, in a five-fold reduction in Δ<[Ts]> under geoengineering. Regarding (II), however, we diagnose this geoengineering method to result in a considerable spatial variation of the surface temperature anomaly, reaching more than 2 [K] at polar/high latitude regions upon doubling the [CO2] concentration, even in the ideal case when the geoengineering method was successful in canceling out the response in the global mean. In the same time, a new climate is realised also in terms of e.g. an up to 4 [K] cooler tropopause or drier/disrupted Tropics, relative to unforced conditions.

Tamás Bódai et al.
Interactive discussion
Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Tamás Bódai et al.
Tamás Bódai et al.
Viewed
Total article views: 432 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
354 69 9 432 6 6
  • HTML: 354
  • PDF: 69
  • XML: 9
  • Total: 432
  • BibTeX: 6
  • EndNote: 6
Views and downloads (calculated since 23 May 2018)
Cumulative views and downloads (calculated since 23 May 2018)
Viewed (geographical distribution)
Total article views: 432 (including HTML, PDF, and XML) Thereof 419 with geography defined and 13 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited
Saved
No saved metrics found.
Discussed
No discussed metrics found.
Latest update: 21 Oct 2018
Publications Copernicus
Download
Short summary
We establish a framework to conduct a scenario analysis of the best possible outcomes under geoengineering. The scenarios may consist of scenarios of greenhouse gas emission the choice of the quantity that we want to keep under control. The motivation is the desire of an efficient way of assessing the side-effects of geoengineering, concerning the unwanted and uncontrolled changes. Countering CO2 emission by modulating insolation, we find considerable changes in local temperatures or rainfall.
We establish a framework to conduct a scenario analysis of the best possible outcomes under...
Citation
Share