Assessing Carbon Dioxide Removal Through Global and Regional Ocean Alkalization under High and Low Emission Pathways.

Andrew Lenton 1,2, Richard J. Matear 1, David P. Keller 3, Vivian Scott 4 and Naomi E. Vaughan 5

1 CSIRO Oceans and Atmosphere, Hobart Australia
2 Antarctic Climate and Ecosystems Co-operative Research Centre, Hobart, Australia
3 GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
4 School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
5 Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, UK.

1. Abstract

Atmospheric CO₂ levels continue to rise, increasing the risk of severe impacts on the Earth system, and on the ecosystem services that it provides. Artificial Ocean Alkalization (AOA) is capable of reducing atmospheric CO₂ concentrations, surface warming and addressing ocean acidification. Here we simulate global and regional responses to alkalinity addition (0.25 PmolAlk/year) using the CSIRO-Mk3L-COAL Earth System Model in the period 2020-2100, under high (RCP8.5) and low (RCP2.6) emissions. While regionally there are large changes associated with locations of AOA, globally we see only a very weak dependence on where and when AOA is applied. We see that under RCP2.6, while the carbon uptake associated with AOA is only ~60% of the total under RCP8.5, the relative changes in temperature are larger, as are the changes in pH (1.4x) and aragonite saturation (1.7x). The results of this modelling study are significant as they demonstrate that AOA is more effective under lower emissions, and the higher the emissions the more AOA required to achieve the same reduction in global warming and ocean acidification. Finally, our simulations show AOA in the period 2020-2100 is capable of offsetting global warming and ameliorating ocean acidification increases due to low emissions, but regionally the response is more variable.
1. Introduction

Atmospheric carbon dioxide (CO$_2$) levels continue to rise primarily as a result of human activities. Recent studies have suggested that even deep cuts in emissions may not be sufficient to avoid severe impacts on the Earth system, and the ecosystem services that it provides (Gasser et al., 2015). Recent international negotiations (UNFCCC, 2015) agreed to limit global warming to well below 2°. The application of Carbon Dioxide Removal (CDR), sometimes referred to as “Negative Emissions”, appears to be required to achieve this goal, as emission reductions alone are likely to be insufficient (Rogelj et al., 2016). In this context, there is an urgent need to assess how Carbon Dioxide Removal (CDR) could help either mitigate climate change or even reverse it, and to understand the potential risks and benefits of different options.

While warming represents a major imminent global threat, including through coral bleaching which is already significantly impacting the natural environment (Hughes et al., 2017) ocean acidification poses an additional and equally significant threat to the marine environment. Ocean acidification occurs as CO$_2$ taken up by the ocean reacts with the seawater to reduce the carbonate ion concentration and decrease the pH. Annually the oceans take up about 28% of anthropogenic CO$_2$ emitted (Le Quéré et al., 2015).

Ocean acidification is the unavoidable consequence of rising atmospheric CO$_2$ levels and will impact the entire marine ecosystem - from plankton at the base, to fish at the top. Potential impacts include changes to calcification, fecundity, organism growth and physiology, species composition and distributions, food web structure and nutrient availability (Doney et al., 2012; Dore et al., 2009; Fabry et al., 2008; Iglesias-Rodriguez et al., 2008; Munday et al., 2010; Munday et al., 2009). Within this century, the impacts of ocean acidification will increase in proportion to emissions (Gattuso et al., 2015). Furthermore, these changes will be long lasting, persisting for centuries or longer even if emissions were halted (Frolicher and Joos, 2010).

To date many different CDR techniques have been proposed both on the land and in the ocean (Royal Society, 2009; National Research Council, 2015). Their primary purpose is to reduce atmospheric CO$_2$ levels; and most CDR methods will ameliorate the impacts of ocean acidification, although some proposed techniques such as ocean pipes (Lovelock and Rapley,
2007) and micro-nutrient addition (Keller et al., 2014) may actually lead to an acceleration of ocean acidification in surface waters.

Artificial Ocean Alkalization (AOA) through altering the chemistry of seawater both enhances ocean carbon uptake, thereby reducing atmospheric CO$_2$, while at the same time directly reversing ocean acidification. AOA can be thought of as a massive acceleration of the natural processes of chemical weathering of minerals that may have played a role in modulating the climate on geological timescales (Zeebe, 2012; Colbourn et al., 2015).

Alkalinity changes may also have played an important role in controlling glacial-interglacial cycles of atmospheric CO$_2$ e.g. Sigman and Boyle (2000).

Specifically, as alkalinity enters the ocean the pH increases leading to elevated carbonate ion concentration, reduction in hydrogen ion concentration and decrease in the concentration of aqueous CO$_2$ (or pCO$_2$). This in turn enhances the disequilibrium of CO$_2$ between the ocean and atmosphere (or $\Delta$pCO$_2$= pCO$_2$$_{\text{ocean}}$ - pCO$_2$$_{\text{atmosphere}}$) leading to increased ocean carbon uptake, and reduction in atmospheric CO$_2$ concentration. These increases in pH and carbonate ion concentration reverse the ocean acidification due to uptake of anthropogenic CO$_2$.

Kheshgi (1995) first proposed AOA as a method of CDR. Renforth and Henderson (2017) review the early experimental, engineering and modelling work undertaken to investigate AOA. From the observational perspective we draw particular attention to the experimental work of Albright et al. (2016) which provided an in situ demonstration of localised AOA to offset the observed changes in ocean acidification on the Great Barrier Reef that have occurred since the pre-industrial period.

Several modelling studies have explored the impacts of AOA both on carbon sequestration and ocean acidification. Using ocean only biogeochemical models Kohler et al. (2013) explored AOA via olivine addition. Olivine, in addition to increasing alkalinity also adds iron and silicic acid, both of which can enhance ocean productivity (Jickells et al., 2005; Ragueneau et al., 2000). Kohler et al. (2013) estimated the response of atmospheric CO$_2$ levels and pH to different levels of olivine addition over the period 2000-2010, and later this was extended to 2100 by Hauck et al. (2016). These studies demonstrate a global impact, that appeared to scale with the amount of olivine added. Importantly, Kohler et al. (2013)
showed that the global effect of alkalinity added along shipping routes (as an analogue for practical implementation) was not significantly different from that of alkalinity added in a highly idealized uniform manner.

Ilyina et al. (2013) explored the potential of AOA to mitigate rising atmospheric CO$_2$ levels and ocean acidification in ocean-only biogeochemical simulations, and showed that AOA has the potential to ameliorate future changes due to high emissions. They did not limit the amount of AOA, as their goal was to offset the projected future changes; and showed that the amount of AOA required to do this would drive the carbonate system to levels well above pre-industrial levels. Ilyina et al. (2013) also conclude that local AOA could potentially be used to offset the impact of ocean acidification, with enhanced CO$_2$ uptake being only a side benefit. This regional approach was explored further by Feng et al. (2016) who suggested that local AOA in the tropical ocean, in areas of high coral calcification, has the potential to offset the impact of future rising atmospheric CO$_2$ levels under a high emissions scenario (RCP8.5). This study also revealed strong regional sensitivities in the response of ocean acidification related to the locations in which it was applied.

To date several studies estimate the response of the Earth system to AOA. Gonzalez and Ilyina (2016) used an Earth System Model (ESM) to estimate the AOA required to reduce atmospheric concentrations from high emissions scenario (RCP8.5) to the medium emissions scenario (RCP4.5). They estimated that to mitigate the associated 1.5K warming difference, via reducing atmospheric CO$_2$ concentrations by ~400 ppm, would require an addition of 114 Pmol of alkalinity (between 2018-2100), and would come at the cost of very large (unprecedented) changes in ocean chemistry.

Keller et al. (2014) used an Earth System Model of Intermediate Complexity (EMIC) to explore the impact of AOA over the period 2020-2100, to a globally uniform addition of alkalinity (0.25 PmolALK/yr), an amount based on the estimated carrying capacity of global shipping following Kohler et al. (2013). Keller et al. (2014) showed that AOA led to reduction in atmospheric CO$_2$ of 166 PgC or ~78ppm, a net cooling of 0.26K and a global increase in ocean pH of 0.06 in the period 2020-2100.

To date not all modelling studies have been emissions driven, and this is important as potential climate and carbon cycle feedbacks may not have been accounted for. Capturing
these feedbacks is critical as they have the potential to be very large (Jones et al., 2016).

Further, no studies have explored the impact of AOA under low emissions scenarios such as RCP2.6. This is important because scenarios that limit warming to 2° or less, currently utilize considerable land based CDR via afforestation and/or Bio-Energy with Carbon Capture and Storage (BECCS) the feasibility of which are increasingly questioned due in part to limited land (Smith et al., 2016), whereas the potential CDR capacity of the oceans is orders of magnitude greater (Scott et al., 2015).

In this work, using a fully coupled Earth System Model (CSIRO-Mk3L-COAL), which includes climate and carbon feedbacks, we investigate the impact of AOA on ocean acidification, land and ocean carbon uptake and warming. Specifically, the question this study tackles is: What is the impact of global and regional AOA on the Earth System, and how efficient it is at mitigating global warming and ocean acidification under high and low emissions trajectories?

2. Methods

2.1 Model Description

The model simulations were performed using the CSIRO-Mk3L-COAL (Carbon Ocean, Atmosphere, Land) Earth System Model which includes climate-carbon interactions and feedbacks. (Matear and Lenten, 2014; Zhang et al., 2014a). The ocean component of the Earth System Model has a resolution of 2.8° by 1.6° with 21 vertical levels. The ocean biogeochemistry is based on (Lenten and Matear, 2007; Matear and Hirst, 2003) simulating the distributions of phosphate, oxygen, dissolved inorganic carbon and alkalinity in the ocean. The model simulates particulate inorganic carbon (PIC) production as function of particulate organic carbon (POC) production via the rain ratio (9%) following (Yamanaka and Tajika, 1996). This ocean biogeochemical model was shown to simulate the observed distributions of total carbon and alkalinity in the ocean (Matear and Lenten, 2014) and phosphate (Duteil et al., 2012).

The atmosphere resolution is 5.6° x 3.2° with 18 vertical layers. The land surface scheme uses CABLE (Best et al., 2015) coupled to CASA-CNP (Wang et al., 2010; Mao et al., 2011) which simulates biogeochemical cycles of carbon, nitrogen and phosphorus in plants and soils. The response of the land carbon cycle was shown to realistically simulate the observed biogeochemical fluxes and pools on the land surface (Wang et al., 2010).
To quantify the changes in ocean acidification we calculate pH changes on the total scale following the recommendation of Riebesell et al. (2010). To calculate the changes of carbonate saturation state we use the equation of Mucci (1983).

2.2 Model Experimental Design

Our ESM was spun-up under a preindustrial atmospheric CO₂ concentration of 284.7 ppm, until the simulated climate was stable (> 2000 years) (Phipps et al., 2012). From the spun-up initial climate state, the historical simulation (1850 - 2005) was performed using the historical atmospheric CO₂ concentrations as prescribed by the CMIP5 simulation protocol (Taylor et al., 2012).

Following the historical concentration pathway from 2006, two different future projections to 2100 were made using the atmospheric CO₂ emissions corresponding to Representative Concentration Pathways of low emissions (RCP2.6) and high emissions (RCP8.5 or ‘business as usual’) (Taylor et al., 2012). All simulations include the forcing due to non-CO₂ greenhouse gas concentrations (Taylor et al., 2012). We define RCP8.5 and RCP2.6 as our control cases for the corresponding experiments below.

In the period 2020-2100 we undertook a number of AOA experiments using a fixed quantity of 0.25 Pmol/yr of alkalinity, the same amount used by Keller et al. (2014). Consistent with this study we applied AOA in the surface ocean all year-round in ice-free regions, set to be between 60°S and 70°N. For each of the two emissions scenarios, we considered four different regional applications of AOA, shown in Figure 1. These are: (i) AOA globally (AOA_ G) between 60S and 70N; (ii) the higher latitudes comprising the subpolar northern hemisphere oceans (40N -70N) and the (ice-free) Southern Ocean (40S-60S) (AOA_SP); (iii) the subtropical oceans (15-40N and 15S and 40S; AOA_ST); and (iv) in the equatorial regions (15N-15S; AOA_T). In this study, we only look at the response of the Earth system to alkalinity injection. We do not consider the biogeochemical response to other minerals and elements associated with the proposed sourcing of alkalinity from the application of finely ground ultra-mafic rocks such as olivine and fosterite, nor dissolution processes required to increase alkalinity e.g. Montserrat et al. (2017).

3. Results and Discussion
To aid in presenting our results and to compare these with previous studies we first discuss the carbon cycle, global surface warming (2m surface air temperature), and response and ocean acidification response to the 4 different AOA experiments under the high (RCP8.5) and low (RCP2.6) emissions scenarios. We then look at the regional behaviour of the simulations in the different AOA experiments.

3.1 Global Response

For each emission scenario, we simulated 4 different AOA experiments, which all had the same 0.25 Pmol/yr of alkalinity added. As anticipated by 2100, AOA increased the global mean surface ocean alkalinity relative to the corresponding scenario control case, with the magnitude of the increase in alkalinity being dependent on where it was added (Table 1). Polar addition (AOA_SP) led to the smallest net increase in surface alkalinity, while tropical addition (AOA_T) produced the greatest increase. As expected, the global mean changes in surface alkalinity between emissions scenarios are very small (less than 3 μmol/kg difference). The slightly greater increase in surface values in alkalinity under RCP8.5 likely reflects enhanced ocean stratification under higher emissions (Yool et al., 2015).

<table>
<thead>
<tr>
<th>AOA Experiment</th>
<th>RCP8.5 (μmol/kg)</th>
<th>RCP2.6 (μmol/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOA_G-RCP</td>
<td>108.3</td>
<td>105.1</td>
</tr>
<tr>
<td>AOA_SP-RCP</td>
<td>79.7</td>
<td>74.4</td>
</tr>
<tr>
<td>AOA_ST-RCP</td>
<td>115.1</td>
<td>112.9</td>
</tr>
<tr>
<td>AOA_T-RCP</td>
<td>129.8</td>
<td>127.1</td>
</tr>
</tbody>
</table>

Table 1 For the two RCP scenarios the relative increase in ocean surface alkalinity (μmol/kg) between each AOA experiment and control experiment in 2100.

3.1.1 Carbon Cycle

The large atmospheric CO$_2$ concentration at the end of the century under RCP8.5 reflects the large increase in emissions projected (under RCP8.5), while under RCP2.6 a similar atmospheric concentration of CO$_2$ is seen 2100 as at the beginning of the simulation (2020) (Figure2a). We note that atmospheric CO$_2$ levels in our CSIRO-MK3L-COAL for the control cases are greater than for their respective concentration driven RCPs due to nutrient limitation in the land, leading to reduced carbon uptake (Zhang et al., 2014a).
Under all emissions scenarios and experiments AOA leads to reduced atmospheric CO$_2$ levels (Figure 2a). Under RCP8.5, AOA reduces atmospheric concentration by 82-86 ppm, this represents ~16% decrease in atmospheric concentration (525 ppm increase over the period 2020-2100). In contrast to RCP8.5, AOA under RCP2.6 leads to a smaller reduction in atmospheric concentration (53-58 ppm). Figure 2a shows that by the of the century AOA more than compensates for the projected increase in atmospheric CO$_2$ due to RCP2.6.

Over the 2020-2100 period, the reduction in atmospheric CO$_2$ levels associated with AOA is primarily due to increased ocean carbon uptake, offset by small decreases in the land surface carbon uptake (Table 2). In the ocean, RCP8.5 has much greater net uptake than RCP2.6, about 1.5 times more, due to the larger (and growing) disequilibrium between the atmosphere and ocean.

In the ocean, the relative increase in carbon uptake in response to AOA is primarily abiotic in nature. Consistent with Keller et al. (2014) and Hauck et al. (2016) the simulated changes in ocean export production were very small (~0.2 PgC) under RCP8.5. While under RCP2.6 it was slightly larger at 1.2 PgC, but still less than 1% percent of the total ocean increase simulated under AOA. In contrast, the relative decreases in land carbon uptake were biotic in nature. The simulated cooling over land drove a reduction in net primary production that more than offset the decrease in carbon flux due in heterotrophic respiration. On the land, the RCP8.5 simulated a smaller reduction in carbon uptake than RCP2.6, potentially due to a smaller relative cooling (Table 3).

For both emissions scenarios, the 4 AOA experiments all produced similar reductions in atmospheric CO$_2$ concentrations (Figure 2) with less than a 5% difference in the total land and ocean carbon uptake. The global changes in land and ocean carbon uptake do not appear to be very sensitive to where we add the alkalinity to the surface ocean. This is consistent with Kohler et al. (2013) who saw little difference in adding olivine along existing shipping tracks, versus uniformly adding it to the surface ocean. It is also consistent with regional addition studies Ilyina et al. (2013) and Feng et al. (2016) who demonstrated a global impact.

Our simulated total increased carbon uptake under AOA_G with RCP8.5 (179 PgC) is comparable to the 166 PgC reported by (Keller et al., 2014). Their cumulative increase in
ocean carbon uptake by 2100 of 181 PgC was in very good agreement with our value of 184 PgC. However, they simulated a reduction in land uptake nearly twice the -5.8 PgC reduction in our AOA_G simulation. These differences may reflect both the sensitivity of the simulated climate feedbacks, and differences in land surface models.

<table>
<thead>
<tr>
<th></th>
<th>Total RCP8.5</th>
<th>Ocean RCP8.5</th>
<th>Land RCP8.5</th>
<th>Total RCP 2.6</th>
<th>Ocean RCP 2.6</th>
<th>Land RCP 2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOA_G-RCP</td>
<td>178.6</td>
<td>184.4</td>
<td>-5.8</td>
<td>121.1</td>
<td>143.1</td>
<td>-22.1</td>
</tr>
<tr>
<td>AOA_SP-RCP</td>
<td>183.3</td>
<td>188.1</td>
<td>-4.8</td>
<td>122.1</td>
<td>145.2</td>
<td>-24.1</td>
</tr>
<tr>
<td>AOA_ST-RCP</td>
<td>180.7</td>
<td>185.1</td>
<td>-4.4</td>
<td>122.0</td>
<td>143.1</td>
<td>-21.2</td>
</tr>
<tr>
<td>AOA_T-RCP</td>
<td>174.5</td>
<td>177.2</td>
<td>-2.7</td>
<td>116.0</td>
<td>139.2</td>
<td>-23.1</td>
</tr>
</tbody>
</table>

Table 2 The total integrated additional carbon uptake (in PgC) in the period 2020-2100 in different experiment and emissions scenarios, negative denotes enhanced uptake.

3.1.2 Surface Air Temperature

In the control simulations, the global mean surface air temperature (SAT; 2m) increased in the period 2020-2100 with RCP2.6 simulating a net warming of 0.4±0.1K while RCP8.5 warmed by 2.7±0.1K (2081-2100). All AOA experiments simulated a reduction in global mean SAT relative to their corresponding control simulation (Figure 2b). Within each emissions scenario the global mean SAT decline associated with AOA is always greater and more variable over the land than ocean (Table 3). While the mean cooling, in the period 2081-2100, is also greater over the land under RCP8.5 than RCP2.6, potentially reflecting feedbacks such as soil-moisture (Seneviratne et al., 2010) snow and ice cover changes. However, these changes are associated with large interannual large variability, and therefore not significantly different.

Under RCP2.6, all the AOA experiments keep warming levels much close to values in 2020 than RCP2.6 by the end of this century (2100; Figure 2b). In contrast, under the RCP8.5 scenario, none of the AOA experiments have a significant impact on the projected warming
by the end of this century (less than 10%) reflecting the large warming anticipated under high emissions (Rogelj et al., 2012).

<table>
<thead>
<tr>
<th>AOA</th>
<th>Total RCP8.5</th>
<th>Ocean RCP8.5</th>
<th>Land RCP8.5</th>
<th>Total RCP 2.6</th>
<th>Ocean RCP 2.6</th>
<th>Land RCP 2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOA_G-RCP</td>
<td>-0.16±0.08</td>
<td>-0.14±0.07</td>
<td>-0.22±0.15</td>
<td>-0.25±0.08</td>
<td>-0.19±0.05</td>
<td>-0.39±0.22</td>
</tr>
<tr>
<td>AOA_SP-RCP</td>
<td>-0.13±0.10</td>
<td>-0.11±0.07</td>
<td>-0.18±0.20</td>
<td>-0.23±0.08</td>
<td>-0.18±0.05</td>
<td>-0.35±0.22</td>
</tr>
<tr>
<td>AOA_ST-RCP</td>
<td>-0.08±0.05</td>
<td>-0.06±0.03</td>
<td>-0.13±0.14</td>
<td>-0.20±0.09</td>
<td>-0.15±0.06</td>
<td>-0.30±0.20</td>
</tr>
<tr>
<td>AOA_T-RCP</td>
<td>-0.14±0.06</td>
<td>-0.12±0.05</td>
<td>-0.19±0.11</td>
<td>-0.16±0.06</td>
<td>-0.13±0.05</td>
<td>-0.24±0.16</td>
</tr>
</tbody>
</table>

Table 3 The differences in global mean surface air temperature and their standard deviations (1-σ) (K; SAT; 2m) for 2090 (in the period 2081-2100) for different AOA experiments and emissions scenarios relative to the emissions scenarios with no AOA.

Within each of the scenarios, there is some variability in the magnitude of the cooling within the 4 different AOA experiments, however, these differences are smaller than the interannual variability over the last 2 decades of the simulations. Therefore, it appears that the global mean SAT decline with AOA is not very sensitive to where the alkalinity is added under either emission scenario.

The global mean cooling associated with AOA_G under RCP8.5 (-0.16±0.08K; 2081:2100) is close to the mean surface air temperature decrease of -0.26K reported by (Keller et al., 2014) for the same levels of AOA. These differences may reflect the simplified atmospheric representation of the UVIC Intermediate Complexity Model and different climate sensitivities.

3.1.3 Ocean Acidification

Here we quantify changes in ocean acidification in terms of pH and aragonite saturation state changes. We consider these two diagnostics because they are associated with different
biological impacts and not necessarily well correlated (Lenton et al., 2016). In the future, the global mean changes in pH and aragonite saturation state will be proportional to the emissions trajectories following Gattuso et al. (2015) with the largest changes associated with the higher emissions (RCP8.5) (Figure 2c-d). By 2100 despite a return to 2020 values of atmospheric CO₂ concentration under RCP2.6 (Figure 2), neither pH or aragonite saturation state return to 2020 values, consistent with Mathesius et al. (2015).

In the 2020-2100 period, AOA under RCP2.6 led to much larger increases in surface pH and aragonite saturation state, more than 1.3 times, and more than 1.7 times that of RCP8.5 respectively (Table 4). These changes reflect the differences in the mean state associated with high and low emissions, specifically the difference between Alkalinity and DIC. The values of DIC in the upper ocean are larger under RCP8.5 than RCP2.6, and therefore the ALK-DIC is higher. For a given addition of alkalinity, the increase in the upper ocean DIC will be greater in the high emission case than the low emission case due to the Revelle Factor (Revelle and Suess, 1957). Consequently, the difference between Alkalinity and DIC with AOA increases less in the high emission scenario than the low scenario, which translates into smaller increases in pH and aragonite saturation state in the high scenario.

While there was a significant difference in pH and aragonite saturation state changes with AOA between high and low emissions cases, the global mean changes for different AOA experiments within each scenario is quite similar (Table 4). The exception being the AOA_SP experiment, where its pH and aragonite saturation state changes are only ~75% of the change in the other AOA experiments. This reduced change in the polar region is consistent with the smaller changes in the surface ocean alkalinity values associated with AOA_SP (Table 1). These differences at higher latitudes reflect the enhanced subduction of alkalinity away from the surface ocean into the ocean interior that occurs in the high latitude oceans (Groeskamp et al., 2016).

AOA_G under RCP8.5 leads to a relative increase in pH of 0.06 which is consistent with (Keller et al., 2014), while our relative increase in aragonite saturation state (0.28) is also very close to their simulated value (0.31). To put these changes into context, the estimated decrease in pH since the preindustrial is 0.1 units (Raven et al., 2005).
Aragonite RCP 8.5 pH RCP 8.5 Aragonite RCP 2.6 pH RCP 2.6

<table>
<thead>
<tr>
<th></th>
<th>Aragonite RCP 8.5</th>
<th>pH RCP 8.5</th>
<th>Aragonite RCP 2.6</th>
<th>pH RCP 2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOA_G-RCP</td>
<td>0.28</td>
<td>0.06</td>
<td>0.50</td>
<td>0.07</td>
</tr>
<tr>
<td>AOA_SP-RCP</td>
<td>0.20</td>
<td>0.05</td>
<td>0.39</td>
<td>0.07</td>
</tr>
<tr>
<td>AOA_ST-RCP</td>
<td>0.30</td>
<td>0.06</td>
<td>0.54</td>
<td>0.08</td>
</tr>
<tr>
<td>AOA_T-RCP</td>
<td>0.28</td>
<td>0.06</td>
<td>0.50</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Table 4 The relative differences in surface value of aragonite saturation state and pH between the AOA experiments and the high and low emissions scenarios in 2100

3.2 Regional Responses

For both RCP scenarios, there are large regional differences in the relative surface changes in alkalinity, temperature, and ocean acidification associated with the different AOA experiments. The regional nature of these changes is closely associated with where alkalinity addition is applied, and the two different emissions scenarios considered here do not differ significantly in their behaviour. This implies that any differences in stratification and overturning circulation between the two scenarios are insufficient to significantly modulate the response to AOA.

3.2.1. Surface Alkalinity

For both scenarios, the greatest surface alkalinity changes occur where the alkalinity is added (Figure 3). Spatially under either emission scenario, the relative differences in 2090 are very similar, consequently we only show the changes under RCP 2.6 (Figure 3). The only significant differences occur in the Arctic, reflecting larger longer-term changes in alkalinity projected under higher emissions (Yamamoto et al., 2012).

Overall the greatest increases are seen in the tropical ocean (AOA_T) suggesting this is the most efficient region in retaining the added alkalinity in the upper ocean. This reflects the fact that subduction processes in the tropical ocean are less efficient than other regions such as the higher latitudes. In the (ice-free) subpolar oceans (AOA_SP) produced the smallest relative increase in alkalinity, and this reflects the strong and efficient surface to interior
connections occurring at higher latitudes (Groeskamp et al., 2016). The global mean relative increase associated with AOA in the subtropical gyres (AOA_ST) and globally (AOA_G) fall between the tropical and higher latitude values. In the case of AOA_ST this reflects the time-scales associated with circulation of the subtropical gyres.

The most modest relative increase in alkalinity occurs in the non-ice-free regions where alkalinity is not explicitly added. Interestingly even when alkalinity is added in the very high latitude Southern Ocean it is carried northward by the Ekman current explaining the very modest increase in the region where AOA occurs between 50S to 60S. In terms of the total alkalinity added to the surface ocean, about one-third remains in the upper 200m in 2100.

Specifically, for AOA_G we see 31% remains, AOA_T and AOA_ST: 34%, while for AOA_SP: 22-24% remains, which (as anticipated) is lower than in other regions.

Spatially AOA in the higher latitude regions (AOA_SP) leads to very large relative increases in alkalinity (> 1000 \( \mu \text{mol/kg} \); 2090) occurring along the northern most boundary of the Northern Subpolar Gyres, particularly the North Pacific. Clearly in this region the rate of AOA exceeds the rate of subduction allowing alkalinity to build up. Large relative increases in alkalinity also occur in the Southern Ocean under AOA_SP, particularly along Western Boundary Currents. However, in contrast to northern high latitudes the values still remain quite low suggesting that the rate of addition does not exceed the rate of subduction even under the highest emission scenario.

AOA_ST shows a large relative increase of \( \sim300 \mu \text{mol/kg} \) (2081-2100) in the subpolar gyre regions. Overall, we find that these relative increases are quite homogenous across the entire subtropical gyres, with strong mixing with tropical waters leading to significant relative increases in tropical Atlantic, Western Pacific and Indian Oceans. Within the tropical ocean, under AOA_T the largest relative changes are found across the entire tropical Indian Ocean (~ 400 \( \mu \text{mol/kg} \)) with large relative increases also seen the Indonesian seas (~280 \( \mu \text{mol/kg} \); 2081-2100). Away from the tropical Indian Ocean we find that relatively homogenous increases occur in the Western Pacific and the Atlantic, with much more modest relative increases in the Eastern Pacific reflecting the dominant East to West upper ocean circulation.

Consistent with the response of AOA_ST, AOA_T leads to relative increases in surface alkalinity in the AOA_ST region of \( \sim130 \mu \text{mol/kg} \) (2081-2100).
In the case of AOA_G a relatively uniform net increase in alkalinity occurs in all regions with the exception of the upwelling regions such as the tropical Pacific, which showed a more modest relative increase. In AOA_G there is little evidence of any of the very large increases in alkalinity seen in the more regional AOA experiments. This spatial pattern of relative increase is broadly consistent with the pattern of global alkalinity increase simulated by Ilyina et al. (2013) and Keller et al (2014) for AOA in the (ice-free) global ocean.

### 3.2.2 Changes in the interior distribution of alkalinity in the global ocean

As only about 30% of the total AOA remains in the upper 200m, we explore the fate of this alkalinity in the interior ocean in the zonal sections of alkalinity (Figure 4). As the pattern is very similar, between RCP2.6 and RCP8.5 we only show RCP2.6, noting that in the North Atlantic where the projected ocean stratification is stronger under higher emissions (not shown) leading to slightly decreased subsurface values. This increased stratification is consistent with other studies e.g. (Yool et al., 2015).

Unlike the surface plots of AOA, the relative increases in alkalinity due to AOA are very similar across all experiments. This heterogeneous pattern of alkalinity increase is associated with water entering the interior ocean along specific surface to interior pathways (Groeskamp et al., 2016). Specifically, we see alkalinity moving into the interior ocean along the poleward boundaries of the subtropical gyres, associated with the formation and subduction of mode waters, and an increase in the subtropical gyres associated with large-scale downwelling, and deep mixing in the North Atlantic. The changes in alkalinity are mainly found in the upper ocean (<1000 m) which reflects the relatively short period of alkalinity addition. Given the short period this is analogous to present-day observed distributions of anthropogenic carbon (Sabine et al., 2004).

As the changes in export production are very small, the large changes in the interior alkalinity concentrations primarily reflect the physical transport, rather than the sinking and remineralization of calcium carbonate. Clearly other biological processes, not represented in our model, have the potential to impact the surface and interior values of alkalinity (Matear and Lenton, 2014). One such process is the reduction in ratio of PIC:POC under higher emissions (Riebesell et al., 2000) however it has been shown that even a very large reduction
in PIC production (50%) would not significantly impact our results (Heinze, 2004).

Unfortunately, at present, the magnitude and sign of many of these other feedbacks remains poorly known (Matear and Lenton, 2014) consequently quantifying their impact on our results is very difficult, and beyond the scope of this study.

3.2.3 Ocean Carbon Cycle Response

The similarity in global ocean carbon uptake associated with all AOA experiments for a given emission scenario hides the large spatial differences between simulations. Given that the largest carbon cycle response occurs in the ocean (Table 2), we focus on this response for RCP8.5 and RCP2.6 (Figures 5 and 6). As expected ocean carbon uptake is strongly enhanced in the regions of AOA. Away from regions of AOA there is a reduction in carbon uptake, associated with the weakening of the gradient in CO₂ between the atmosphere and ocean due to AOA. Interestingly the largest increase spatially occurs in the Southern Ocean under AOA_SP for RCP2.6, while in contrast the largest changes under RCP8.5 occurs in the tropical ocean under AOA_SP. The very small changes in export production in RCP2.6 were located in the Arabian Sea (not shown), and while these changes are < 1% of the total change in carbon uptake, nevertheless they maybe important regionally.

3.2.4 Temperature (SAT)

The decrease in global mean SAT associated with all AOA experiments for a given emission scenario again hides the large spatial differences between the simulations. The response of surface temperature is spatially very heterogeneous (Figures 7 and 8), and while the regional surface temperature changes are very similar between the two emissions scenarios. The exception to this is the Arctic which did not show a consistent response across the different AOA experiments. Under both emission scenarios, the largest cooling associated with AOA occurs over Northern Russia and Canada, and Antarctica (greater than a -1.5K cooling) with a larger cooling in these regions under RCP2.6.

In the surface ocean, AOA in the RCP2.6 scenario shows a net cooling over the ocean, with the exception of the North Atlantic, east of New Zealand, and off the southern coast of Alaska which show very a modest warming. A similar pattern is evident in RCP8.5 however
there is a greater cooling in the high latitudes, and less cooling in the lower latitudes than under RCP2.6.

3.2.5 Ocean Acidification Response

Globally the response of pH and aragonite saturation state associated with AOA are similar, however large spatial and regional differences are present. To aid in the interpretation of changes in aragonite saturation state, overlain on the aragonite saturation state maps (Figures 9 and 10) are the contours corresponding to the value of 3, the approximate threshold for suitable coral habitat (Hoegh-Guldberg et al., 2007). On these surface maps and subsequent section plots (Figures 13 and 14) we plot the saturation horizon i.e. the contour corresponding to the transition from chemically stable to unstable (or corrosive), i.e. aragonite saturation state is equal to 1 (Orr et al., 2005).

The largest relative changes in pH and aragonite saturation state were associated with regions of AOA, reflecting increases in the surface values of alkalinity. All simulations increase pH and aragonite saturation state in the Arctic despite no direct addition in this region, with the largest changes here associated with AOA_G and AOA_SP. Interestingly all simulations show little to no increase in the high latitude Southern Ocean, consistent with more efficient transport of the added alkalinity into the ocean interior.

The changes in pH associated with AOA experiments under RCP8.5 while spatially very different, particularly when added in the subpolar ocean, are still much less than the decreases associated with RCP8.5 with no AOA. In terms of aragonite saturation state the conditions for coral growth in the tropical ocean remain very unfavorable by the end of century (i.e. aragonite saturation state < 3) under all regional and global experiments, with the exception of AOA_T, where only a very small region in the Central Pacific Ocean exhibits suitable conditions.

Consistent with Feng et al. (2016) we find that this level of AOA under RCP8.5 is insufficient to ameliorate or significantly alter the large-scale changes in ocean acidification. More positively, at the higher latitudes the saturation horizon is moved poleward with the largest shift associated with AOA_SP, and the smallest shift at the high latitudes occurring under AOA_T. Consistent with these changes we see a deepening of the saturation horizon
everywhere (Figure 13), and little difference spatially between AOA experiments, consistent
with zonal mean changes in alkalinity for the 4 AOA experiments.

The spatial pattern of changes associated with AOA under RCP2.6 are broadly consistent
with those seen under higher emissions, however the magnitude of the response is much
larger again due to the larger differences between Alkalinity and DIC with AOA under
RCP2.6. In terms of aragonite saturation state, the area of tropical ocean favourable for corals
is considerably expanded suggesting that conditions for tropical coral growth are improved
under AOA. As anticipated the largest changes in the area favourable for tropical corals is
associated with AOA_T, closely followed by AOA_ST. As the saturation horizon does not
reach the surface under RCP2.6 we can only look at the changes in the interior ocean. Here
there is a deepening in the saturation horizon in all experiments of a very similar magnitude
(Figure 14), with the exception of the Arctic. Here the response of the saturation horizon is
more sensitive to the location of the AOA varying between ~100m under AOA_T and ~280
m under AOA_SP.

Spatially the large changes in ocean acidification in response to AOA under RCP2.6 more
than compensate for the changes in ocean chemistry due to low emissions in the period 2020-
2100. Globally, in the changes in the period 2020-2100 are sufficient to reversed or
compensate the changes since the preindustrial (1850). However spatially in some regions
such as equatorial upwelling, an important area of global fisheries (Chavez et al., 2003),
AOA in fact leads to higher values of aragonite saturation state and pH than the ocean
experienced in preindustrial period (Feely et al., 2009). We can only speculate on the
potential impact on marine biota through a reduction in aqueous CO₂ and elevated pH levels
in these regions. For a recent review of the potential impact of rising pH and Aragonite
saturation state on marine organisms we direct the reader to Renforth and Henderson (2017).

3.2.6 Importance of Seasonality

In this paper, while we have focused on year-round AOA, as a sensitivity experiment we also
explored whether AOA added in summer or winter was more efficient. To do this we focused
on the higher latitudes regions where the largest seasonal changes in mixing are found (de
Boyer Montegut et al., 2004;Trull et al., 2001). Here we tested whether AOA in either
summer or winter was more effective than year-round addition. To test this for RCP8.5 we
add alkalinity only during the summer at half of the annual rate (or 0.125PmolALK/year) in the AOA_SP region.

Our results showed that the response to AOA in summer was very close to 50% of the response of the year-round addition associated with AOA_SP (or 0.25PmolALK/year). This suggests that the response of AOA appears invariant to when the alkalinity is added. This also suggests, consistent with published studies e.g. (Keller et al., 2014; Feng et al., 2016; Kohler et al., 2013) that the response of the ocean to different quantities of AOA is scalable under the same emissions scenario. Whether this is true under very much larger additions of alkalinity as simulated by (Gonzalez and Ilyina, 2016) is less clear.

4. Summary and Concluding Remarks

Integrated Assessment Modelling for the Intergovernmental Panel on Climate Change shows that CO₂ removal (CDR) may be required to achieve the goal of limiting warming to well below 2° (COP21) (Fuss et al., 2014). Of the many schemes that have been proposed to limit warming, only Artificial Ocean Alkalization (AOA) is capable of both reducing the rate and magnitude of global warming through reducing atmospheric CO₂ concentrations, while simultaneously directly addressing ocean acidification. Ocean acidification, while receiving often less attention, is likely to have very long lasting and damaging impacts on the entire marine ecosystem, and the ecosystem services it provides.

Here, for the first time we investigate the response of a fully coupled climate ESM, i.e. that accounts for climate-carbon feedbacks, under high (RCP8.5) and low (RCP2.6) emissions scenarios to a fixed addition of alkalinity (0.25PmolALK/year). We explore the effect of global and regional application of AOA focusing on the subpolar gyres, the subtropical gyres and the tropical ocean. To assess AOA, we look at changes in surface air temperature, carbon cycling and ocean acidification (aragonite saturation state and pH) in the period 2020-2100.

Consistent with other published studies we see that AOA leads to reduced atmospheric CO₂ concentrations, cooler global mean surface temperatures, and reduced levels of ocean acidification. Globally for these metrics we observed that they do not vary significantly between the various AOA experiments under each emissions scenario. This implies that at this scale there is little sensitivity of the global responses to the region where AOA is applied.
We also investigate as a sensitivity experiment adding alkalinity in different seasons and see little difference in response to when AOA was undertaken.

We see under AOA that the increased carbon uptake is dominated by the ocean. Under RCP8.5 the changes due to AOA are only capable of reducing atmospheric concentrations by a maximum of 86 ppm versus the projected change of 560 ppm, and as such the response of the climate system remains strongly dominated by warming. This is consistent with published studies of the response of the climate system under RCP8.5, and studies that have estimated the amount of AOA required to counteract a high emissions trajectory.

In contrast AOA under RCP2.6 while only capable of reducing atmospheric CO\textsubscript{2} levels by 58 ppm, is sufficient to reduce atmospheric CO\textsubscript{2} concentrations and warming to close to 2020 levels at the end of the century. This is significant as it suggests that in combination with rapid reduction in emissions, AOA could make an important contribution to the goal to keep global mean temperatures below 2°. However, AOA under RCP2.6 does not ameliorate spatial changes of carbon uptake associated with RCP2.6, resulting in a reduced uptake in the terrestrial biosphere and increased uptake in the ocean. This highlights that while the atmospheric CO\textsubscript{2} and warming may be reversible, the response of individual components of the Earth System to different CDR may not be (Lenton et al., 2017).

Interestingly despite the impact of AOA on the atmospheric CO\textsubscript{2} concentration under RCP2.6 being only ~60% of the value the under RCP8.5, we see much larger changes in ocean acidification associated with RCP2.6 than RCP8.5, more than 1.3 times in pH and more than 1.7 times in aragonite saturation state. This reflect the larger reductions of the difference between ALK and DIC that occurs under RCP2.6. We also see larger relative decreases in global temperature associated with RCP2.6. These results are very important as they demonstrate that that AOA is more effective under lower emissions in reducing ocean acidification and global warming.

While there is little sensitivity in the global responses to the region in which AOA is applied, spatially the largest changes in ocean acidification (and ocean carbon uptake) were seen in the regions where AOA was applied. Despite large changes regionally these cannot compensate for the large changes associated with RCP8.5. Even targeted AOA in the tropical ocean can preserve only a tiny area of the ocean conducive to healthy coral growth; and even
then the concomitant large warming is likely to be a stronger influence on coral growth than ocean chemistry (D’Olivo and McCulloch, 2017).

In contrast AOA under RCP 2.6 is more than capable of ameliorating the projected ocean acidification changes in the period 2020-2100. We see that in all cases the area of the tropical ocean suitable for healthy coral growth expands, with the largest changes are associated with tropical addition (AOA_T). In some areas, such as the equatorial Pacific, the changes that have occurred since the preindustrial (1850) are also completely compensated, and in some cases leads to values that are higher than were experienced in the preindustrial period.

While the amount of alkalinity added in this study is small in comparison to other published studies, the challenge of achieving even this level of AOA should not be underestimated. Indeed, it is not clear whether such an effort is even feasible given the cost, logistical, political and engineering challenges of producing and distributing such large quantities of alkaline material (Renforth and Henderson, 2017). In the case of RCP 8.5 it is unlikely that this level of AOA could be justified given our results. If emissions can be reduced along an RCP 2.6 type trajectory this study suggests that AOA is much more effective and may provide a method to remove atmospheric CO$_2$ to complement mitigation, albeit with some side-effects, and an alternative to reliance on land based CDR.

In this work, and other published studies to date, we have not accounted for role of the mesoscale in AOA. In the real ocean (mesoscale) eddies are ubiquitous, and associated with strong convergent and divergent flows, and mixing that plays an important role in ocean transport (Zhang et al., 2014b). It is plausible that the mesoscale, and indeed fine scale circulation in the coastal environment e.g. (Mongin et al., 2016a; Mongin et al., 2016b) would modulate the response to AOA and therefore needs to be considered in future studies.

Furthermore, this is a single model study, and the results of this work need to be tested and compared in other models. The Carbon Dioxide Removal Model Intercomparison Project (CDR-MIP) was created to coordinate and advance the understanding of CDR in the earth system (Lenton et al., 2017). CDR-MIP brings together Earth System models of varying complexity in a series of coordinated multi-model experiments, one of which is a global AOA experiment (C4) (Keller et al., 2017). This will allow the response of the earth system to AOA to be further explored and quantified in a robust multi-model framework, and will
examine important further questions such as including cessation effects of alkalinity addition, and the long-term fate of additional alkalinity in the ocean. In parallel, more process and observational studies e.g. mesocosm experiments, are needed to better understand the implications of AOA.

5. Acknowledgments

D. P. Keller acknowledges funding received from the German Research Foundation's Priority Program 1689 "Climate Engineering" (project CDR-MIA; KE 2149/2-1). The authors declare that there are no conflicts of interest. The model code, simulations and scripts used in this study are available by contacting Andrew Lenton (andrew.lenton@csiro.au). We wish to also to thank Tom W. Trull for his helpful comments on this manuscript.
6. Bibliography


Revelle, R., and Suess, H. E.: Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades, Tellus, 9, 18-27, 1957.


United Nations Framework on Climate Change: Adoption of the Paris Agreement, 21st Conference of the Parties. 2015.
Figure 1 Ocean regions used for Alkalinity Injection in the period 2020-2100, the blue denotes the subpolar regions (AOA_SP), the green regions represent the subtropical gyres (AOA_ST), red the tropical ocean (AOA_T), and all colored regions combined the global alkalinity injection (AOA_G). Note that the ocean regions not colored represent the seasonal sea-ice, where no alkalinity was added in the simulation.
Figure 2 The global mean changes in: Atmospheric CO2 concentration (A), Surface Air Temperature (SAT; B), surface ocean pH (C) and Aragonite Saturation State (D) for high (RCP8.5) and low emissions (RCP2.6) with global and regional AOA in the period 2020-2100.
Figure 3 The spatial map of relative increase in surface alkalinity in 2090 (mean; 2081-2100) associated with global and regional AOA under RCP2.6. Units are µmol/kg
Figure 4 The zonal mean relative changes in alkalinity in the interior ocean associated with global and regional AOA under RCP8.5 in 2090 (mean:2081-2100). Units are μmol/kg.
Figure 5 The spatial map of relative changes in ocean carbon uptake in 2090 (mean; 2081-2100) associated with global and regional AOA under RCP8.5. Units are gC/m²/yr.
Figure 6 The spatial map of relative changes in ocean carbon uptake in 2090 (mean; 2081-2100) associated with global and regional AOA under RCP2.6. Units are gC/m²/yr.
Figure 7 The spatial map of relative changes in surface air temperature 2090 (mean; 2081-2100) associated with global and regional AOA under RCP8.5. Units are K.
Figure 8 The spatial map of relative changes in surface air temperature 2090 (mean; 2081-2100) associated with global and regional AOA under RCP2.6. Units are K.
Figure 9 The spatial map of the relative changes in pH in 2090 (mean; 2081-2100) associated with global and regional AOA under RCP8.5.
Figure 10: The spatial map of the relative changes in pH in 2090 (mean; 2081-2100) associated with global and regional AOA under RCP2.6.
Figure 11 The spatial map of the relative differences in surface aragonite saturation state in 2090 (mean 2081-2100), associated with global and regional AOA under RCP8.5. Contoured on each map are the values of aragonite saturation state of 1 and 3, please see the text for more explanation. The red contours represent RCP8.5 and black AOA for each experiment.
Figure 12 The spatial map of the relative differences in surface aragonite saturation state in 2090 (mean 2081-2100), associated with global and regional AOA under RCP2.6. Contoured on each map are the values of aragonite saturation state of 1 and 3, please see the text for more explanation. The red contours represent RCP2.6 and black AOA for each experiment.
Figure 13 The relative zonal mean differences in aragonite saturation state in 2090 (mean 2081-2100), associated with global and regional AOA under RCP8.5. Contoured on each map are the values of aragonite saturation state of 1, please see the text for more explanation. The red contours represent RCP8.5 and black AOA for each experiment.
Figure 14 The relative zonal mean differences in aragonite saturation state in 2090 (mean 2081-2100), associated with global and regional AOA under RCP2.6. Contoured on each map are the values of aragonite saturation state of 1, please see the text for more explanation. The red contours represent RCP2.6 and black AOA for each experiment.