Journal metrics

Journal metrics

  • IF value: 3.769 IF 3.769
  • IF 5-year value: 4.522 IF 5-year 4.522
  • CiteScore value: 4.14 CiteScore 4.14
  • SNIP value: 1.170 SNIP 1.170
  • SJR value: 2.253 SJR 2.253
  • IPP value: 3.86 IPP 3.86
  • h5-index value: 26 h5-index 26
  • Scimago H index value: 22 Scimago H index 22
Discussion papers | Copyright
https://doi.org/10.5194/esd-2017-123
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 15 Jan 2018

Research article | 15 Jan 2018

Review status
This discussion paper is a preprint. It has been under review for the journal Earth System Dynamics (ESD). The manuscript was not accepted for further review after discussion.

Vegetation dynamics and responses to climate anomalies in East Africa

John Musau1,2, Sopan Patil1, Justin Sheffield3, and Michael Marshall2 John Musau et al.
  • 1School of Environment, Natural Resources and Geography, Bangor University, UK
  • 2Climate Change Research Unit SD6, World Agroforestry Centre (ICRAF), Nairobi, Kenya
  • 3Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Abstract. Vegetation plays a key role in the global climate system via modification of the water and energy balance. Its coupling to climate is therefore important, particularly in the tropics where severe climate change impacts are expected. Consequently, understanding vegetation dynamics and response to present and projected climatic conditions for various land cover types in East Africa is vital. This study provides an assessment of the vegetation trends in East Africa using Leaf Area Index (LAI) time series for the period 1982 to 2011, regression analysis between LAI and Standardised Precipitation Evapotranspiration Index (SPEI), as well as analysis of the temporal non-stationarity in the LAI trends and vegetation response to climate. Our results show mean LAI over the region increased at a rate of about 4×10−3 units per year, while the rate of increase for annual mean temperature was 0.035°C per year. Annual precipitation did not show significant trends. Trend breaks and variations in the stability of LAI time series anomalies significantly alter the LAI trends across the period of study. Drought and wetness conditions also show significant influence on the vegetation dynamics in the region. Given the potential impacts of climate change on vegetation productivity in this region, this study provides the much-needed reference point for the disentanglement of historical climatic- and human-induced vegetation dynamics. In addition, the results indicate key areas of interest for the assessment of potential impacts of vegetation dynamics on land surface water and energy balance in the region.

John Musau et al.
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
John Musau et al.
John Musau et al.
Viewed
Total article views: 646 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
396 227 23 646 9 25
  • HTML: 396
  • PDF: 227
  • XML: 23
  • Total: 646
  • BibTeX: 9
  • EndNote: 25
Views and downloads (calculated since 15 Jan 2018)
Cumulative views and downloads (calculated since 15 Jan 2018)
Viewed (geographical distribution)
Total article views: 648 (including HTML, PDF, and XML) Thereof 648 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited
Saved
No saved metrics found.
Discussed
No discussed metrics found.
Latest update: 21 Oct 2018
Publications Copernicus
Download
Short summary
Three decades LAI data indicates diverse and often non-stationary vegetation changes in East Africa. Significant increase in vegetation variance is indicated in most of the region which is positively correlated to the variance of climate anomalies. The vegetation resistance to short-term drought and its memory effect are mainly positive and significant with noteworthy variations across landcover types. Further analysis is required to separated human-induced and climate-caused vegetation changes.
Three decades LAI data indicates diverse and often non-stationary vegetation changes in East...
Citation
Share