Journal metrics

Journal metrics

  • IF value: 3.769 IF 3.769
  • IF 5-year value: 4.522 IF 5-year 4.522
  • CiteScore value: 4.14 CiteScore 4.14
  • SNIP value: 1.170 SNIP 1.170
  • SJR value: 2.253 SJR 2.253
  • IPP value: 3.86 IPP 3.86
  • h5-index value: 26 h5-index 26
  • Scimago H index value: 22 Scimago H index 22
Discussion papers | Copyright
https://doi.org/10.5194/esd-2017-117
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 06 Dec 2017

Research article | 06 Dec 2017

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Earth System Dynamics (ESD).

The Role of Bioenergy and Carbon Capture and Storage (BECCS) in the Case of Delayed Climate Policy – Insights from Cost-Risk Analysis

Jana Mintenig, Mohammad M. Khabbazan, and Hermann Held Jana Mintenig et al.
  • Research Unit Sustainability and Global Change, Center for Earth System Research and Sustainability, Universität Hamburg, Grindelberg 5, 20144 Hamburg, Germany

Abstract. Cost-Risk Analysis (CRA), a hybrid of Cost-Effectiveness Analysis (CEA) and Cost-Benefit Analysis (CBA), has been proposed as an alternative to CEA as a decision criterion for evaluating climate policy. It weighs mitigation costs against associated risks of violating a predefined temperature guardrail, thereby enabling an analysis of otherwise infeasible temperature targets. Under CEA, delaying climate policy causes infeasibility of temperature targets which was resolved by the assessment under CRA. Indeed, CRA enables a quantitative evaluation of any delay scenario, thereby yielding information of the severeness of postponing climate policy. Alternatively, negative emission technologies have been included in CEA to enlarge the leeway in decision making and postpone infeasibility. This study closes the loop by evaluating the impact of the technology option BECCS (Bioenergy and Carbon Capture and Storage) in light of delayed climate policy under CRA. The work is conducted using the Integrated Assessment Model MIND (Model of Investment and Technological Development). This interplay creates the following insights: An inclusion of BECCS avoids corner solutions that were previously identified for delay scenarios, yielding a larger window of opportunity for action to mitigate climate change. Moreover, it postpones mitigation efforts into the future and removes the pressure to shut down fossil fuel use immediately. Thereby, mitigation-induced welfare losses are reduced substantially. BECSS, when evaluated under CRA, has confirmed well-known results from CEA. However, in contrast to results derived from CEA, mitigation-induced welfare losses decline with delay, while climate risk-induced welfare losses increase with delay by approximately the same magnitude. Hence within CRA, BECCS reduces the welfare effect of delayed climate policy by an order of magnitude. This underlines the crucial role of BECCS for the case of delay, even if one changes the decision-analytic framework from CEA to CRA and thereby softened the temperature target.

Download & links
Jana Mintenig et al.
Interactive discussion
Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Jana Mintenig et al.
Jana Mintenig et al.
Viewed
Total article views: 575 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
458 95 22 575 10 27
  • HTML: 458
  • PDF: 95
  • XML: 22
  • Total: 575
  • BibTeX: 10
  • EndNote: 27
Views and downloads (calculated since 06 Dec 2017)
Cumulative views and downloads (calculated since 06 Dec 2017)
Viewed (geographical distribution)
Total article views: 569 (including HTML, PDF, and XML) Thereof 567 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited
Saved
No saved metrics found.
Discussed
No discussed metrics found.
Latest update: 18 Jul 2018
Publications Copernicus
Download
Citation
Share