Interactive comment on “Seasonal forecast verification and application in times of change” by Yoav Levi and Itzhak Carmona

Anonymous Referee #2

Received and published: 9 February 2017

Summary

In a context of developing seasonal forecasts as climate services, this paper proposes an evaluation of seasonal temperature forecasts from ECMWF System 4 for the June-July-August season. Authors first propose the Fiasco score to evaluate the forecasts for risk assessment and cost-benefit analysis and relate it to the common RPSS and AUROC scores. They also present the trends in temperature from System 4 and ERA-interim. They conclude that, with such trends, classifying forecasts between above-normal, normal or below-normal conditions based on long-term thresholds will not be useful for end users as all future forecasts will be above-normal. If I understand correctly, the authors then analyze the System 4 temperature forecasts, along with two light post-processing: the detrended System 4 temperature forecasts and the series of differences in temperature forecasts between the current season and the previous one.
The performance of these three forecast scenarios is evaluated with the Fiasco score which counts the cases when an above average (respectively below average) temperature is forecast and a below average (respectively above average) temperature is observed.

General comment

Coming from a slightly different field, some methodologies were unclear to me, and would require some clarifications. This particularly targets the Fiasco next score and the time series it is based on. Detailing the variables and thresholds considered in each Fiasco score (standard, detrended, next) could help in that matter.

Results are discussed in the Conclusion section. I would have liked more in-depth discussions of the results, either in the Results section or in a Discussion section, and a more pragmatic link between the results and the general objective of the paper: “help end-users to understand better how to use seasonal forecasts”.

To which extent does the Fiasco score actually measure/reflect end-user needs? This score is very specific to worst-case scenarios.

Other general questions and comments:

- Section 2.2: Is it correct to say that you used the forecasts issued in May, June and July to obtain the forecasts for June-July-August at one month lead? If so, don’t you have 1350 hindcast runs? If you do limit yourself to the first month lead, then this study would be an evaluation of monthly forecasts rather than seasonal forecasts. Lastly, which time step do you consider? From the rest of the article, it seems that the temperatures for June July and August are aggregated.

- The computation of the AUROC score needs to be better explained.

- L. 154-155 “However if both … 1981-2010 conditions.” Just a comment: if these trends maintain in future years, couldn’t the thresholds be adapted to allow for a fair evaluation of the models?
- Section 5 first §: Did I understand correctly: you change the variable of interest from simply being the temperature forecast to being the difference between the temperature forecast for one year and the previous one, thus resulting in 29 values instead of 30 values. Are the thresholds defining the three equal probability groups chosen within this sample of 29 values for each month? Within the sample of 29*3 values for all JJA months altogether? Additionally, if my understanding of this paragraph is correct and if all verification methods remain unchanged, the change in name “Fiasco next score” might be confusing as it would be the same score simply applied to a different variable.

- L.207 “The RPSS, which takes... is positive only in the tropics between 22S and 21N.” Isn’t the RPSS also positive for latitudes south of 47S and between 20N and 43N with some exceptions around 26N?

- L.208 “…the latitude average number of fiasco is 7%...” I could not find these values in Figure 6.

- Why not consider the time series of differences in forecast between one season and the previous, but calculated from the detrended forecasts?

- To which extent is the trend in temperatures responsible for the “good Fiasco scores” (Figure 5a) as compared to the Fiasco next and Fiasco detrended scores (Figure 5b and 5c)? To which extent do these results inform us on optimal strategies for end-users to detect “fiascos”?

- L.243 “the end-user should consider using the coming season forecast relative to previous season or a shorter reference period than the traditional 30 years...”: I would have liked to see this already in this paper to strengthen the analysis.

Technical issues:

- Throughout the paper, spaces are missing between words or after punctuations and special characters. Extra parenthesis also appear, e.g. pages 7, 8 or 9. Several typos appear in the text. I listed some of them below.
- L.45 Change “observes” to “observed”
- L.48 Many other methods exist to evaluate hindcast skill. This sentence should not be restrictive to the criteria enumerated here.
- L.50 I would suggest to change for example to: “…the Area Under the Relative Operating Characteristic (AUROC) curve which considers jointly the hit rate (HR) and the false alarm rate (FAR), …”
- L.69 could you detail the following: “their figures regarding their work”? 
- L.80 “It became operational in November 2011”
- L.83 “one month lead”
- L. 131 “Spatial averaging of the model increases”
- Figure 2: Rewrite the legend to make (a) appear
- Figure 2: I could not see the dashed contour lines mentioned in the legend. Are they supposed to be seen in (a), (b) and (c)?
- L.146 “with the same scale as Figure 2a”
- L.161 Replace “leg” with “lag”? 
- L.163 “hindcast”
- L.198 “radon” change to “random”
- L.210 change “significant” to “significantly” 

Interactive comment on Earth Syst. Dynam. Discuss., doi:10.5194/esd-2016-60, 2016.