Climate engineering by mimicking the natural dust climate control: the Iron Salt Aerosols method

Authors:
Franz Dietrich OESTE *1, Renaud de_RICHTER 2, Tingzhen MING 3, Sylvain CAILLOL 2
* corresponding author

Affiliations & Addresses:
1 gM-Ingenieurbüro, Tannenweg 2, D-35274 Kirchhain, Germany. Email: oeste@gm-ingenieurburo.com
2 Institut Charles Gerhardt Montpellier − UMR5253 CNRS-UM2 − ENSCM-UM1 − Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l’Ecole Normale, 34296 Montpellier Cedex 5, France.
3 School of Civil Engineering and Architecture, Wuhan University of Technology, No. 122, Luoshi Road, Hongshan District, Wuhan, 430070 China.

Abstract
Power stations, ship, and air traffic are among the most potent greenhouse gas emitters and primarily responsible for global warming. Iron salt aerosols (ISA) exert a cooling effect on climate in several ways. This article aims firstly to examine all direct and indirect natural climate cooling mechanisms driven by tropospheric aerosol particles composed partly of iron and chloride, showing their cooperation and interaction within the different environmental compartments.

It then looks at a proposal to enhance the cooling effects by ISA in order to reach the CoP 21 optimistic target level of a global temperature increase of between 1.5 and 2 °C.

Using mineral dust as a natural analogue tool, the proposed ISA method might be able to reduce climate warming by mimicking the same method used by nature during the glacial periods. The first estimations made in this article show that by doubling the current natural ISA emissions into the troposphere, i.e. by about 0.3 Tg Fe per year, artificial ISA would enable the prevention or even reversal of global warming.

The ISA method proposed integrates technical and economically feasible tools.

Keywords
Iron salt aerosols, cooling the earth, reverse global warming, methane removal, CO₂ removal phytoplankton fertilization, cloud albedo, carbon capture and storage (CCS), climate engineering
1. Introduction

The 5th assessment report of the Intergovernmental Panel on Climate Change (IPPC), released in November 2014, is clear on the anthropogenic nature of climate change. Global warming (GW) has already begun to dramatically change continental and marine ecosystems.

A recently noticed risk is that the vertical mixing in the oceans decreases and even reaches a stagnation point (de Lavergne et al., 2014), thus weakening the net oceanic cumulative uptake of atmospheric CO₂ (Bernardello et al., 2014a; Bernardello et al., 2014b).

A consequence of the decrease of vertical ocean mixing is a reduced or interrupted oxygen supply to the depths of the ocean. Currently, the formation of low-oxygen areas in the oceans is increasing (Capone and Hutchins, 2013; Kalvelage et al., 2013). Furthermore, the climate warming entails both a heating of the upper oceanic water layer and a desalting caused by freshwater injection from increasing ice melt. This desalting phenomenon weakens the thermohaline circulation (THC) by promoting density stratification (Hansen et al., 2015) which triggers the formation of oxygen-depleted zones (Voss et al., 2013) that also emit nitrous oxide (N₂O), a potent GHG and a powerful ozone depleting agent.

Warming surface waters and decreasing input of cold oxygenated surface water trigger a temperature rise of the sediments, transforming solid methane hydrate into gaseous methane emissions in seawater (Phrampus et al., 2014). Methane oxidation consumes additional oxygen, decreasing the oxygen content above those areas (Yamamoto et al., 2014). The same effects are expected with an anticipated increase in spring and summer coastal upwelling intensity, associated with increases in the rate of offshore advection, decreasing the nutrient supply and producing a spatial or temporal (phenological) mismatch between production and consumption in the world’s marine most productive ecosystems (Bakun et al., 2015).

These facts have the threatening consequence of a sprawling lack of oxygen in the oceans. In such low-oxygen areas (sub-oxic to anoxic) only bacterial life is possible, higher life forms do not exist there. Accordingly, an early result of the climate warming progression could lead to a dramatic limitation of the oceanic food sources that will be needed for the projected 9-10 billion people by 2050. The same deleterious consequences on seafood supply can also result in ocean surface acidification by increased CO₂ dissolution in sea water and decreased flow of surface water currents to the ocean basin bottoms, limiting reef fish and shelled mollusks survival (Branch et al., 2013).

Any decrease of the THC has severe consequences on all kinds of ecosystems because it further triggers climate warming by different interactions. THC decrease induces a reduction or eventual disappearance of the phytoplankton fertilizers on the ocean surface Si, P, N and Fe extracted from their resources at the bottom of the ocean basins. Hydrothermal fluid
cycling by mid-ocean ridges, off-axis hydrothermal fluid fluxes, subduction-dependent
hydrothermal convection fluids, hydrothermal fluxes at hot spot sea mount and fluid
emissions from anaerobic sediments, contain said elements as dissolved or colloidal phase
(Dick et al., 2015; Hawkes et al., 2013; Holm and Neubeck, 2009; Martin and Russell, 2007;
Orcutt et al., 2011; Postec et al., 2015; Resing et al., 2015; Sousa et al., 2013). The deeper
water of all ocean basins is enriched by the fertilizers. A THC decrease within the ocean
basins will result in a decrease of the assimilative transformation of CO$_2$ into organic carbon.
Moreover, any THC decrease would further trigger the acidification of the ocean surface by
lowering or preventing the neutralization of dissolved CO$_2$ and HCO$_3^-$, because the alkalinity
decreases from hydrothermal sources (Monnin et al., 2014; Orcutt et al., 2011).
During the convective water flow through the huge alkaline ocean crust volume estimated to
about 20 - 540 x 103 km3/yr (Nielsen et al., 2006) ocean water is depleted in O$_2$, but enriched
in its reductant content like methane (Kawagucci et al., 2011; Orcutt et al., 2011). Even
further elements are enriched in this convective water flow through crust rocks, all essential
for the existence of life. The re-oxygenation of this huge water volume becomes retarded or
even impossible with a minimized THC.
According to model calculations of Watson et al. (Watson et al., 2015) the THC might have
significantly changed between last glacial and interglacial periods. During the Cenozoic
epoch with ice covered pole caps the incorporation of carbon in the form of carbonate into
the oceanic crust became much lower than during the warm Late Mesozoic (Coogan and
Gillis, 2013). The findings of Coogan & Gillis show, that during ice-free periods, THCs were
possible with much higher effectivity than recently. Even during those warm periods with low
temperature gradients between polar and equatorial oceans, an effective production of brines
leading to buoyancy differences necessary for development of effective THC, may be
generated (Otto-Bliesner et al., 2002). However, increased inflow rates of high density brines
coming from shallow shelf regions with high evaporation rates, induced several collapses or
vertical reductions of the strong Cretaceous THC. From here and for more than a million
years, the lower parts of ocean basins have been filled up with anoxic brines.
Remnants of these anoxic events are black shale sediments (Takashima et al., 2006). During
such THC collapses, the uptake of CO$_2$ into the oceanic crust stayed restricted to organic
carbon sediments. Additionally, the organic carbon productivity of the remaining oxic zone
was decreased, because phytoplankton fertilizer production was limited to continental
weathering.
These examples point out the sensitivity of the THC to disturbances. Without action, the
weakness of our recent THC may worsen. Any THC collapse would not only result in severe
damages to ecosystems, food chains, and food resources of the oceans, but would also lead
to an acceleration of the increase of atmospheric CO$_2$ concentration, resulting in a faster
climate warming than forecasted.

The best means to prevent such disturbing situations and consequences is to stop GW.

A realistic chance of averting this development is the controlled application of a climate cooling process used several times by nature throughout the last ice ages with high efficiency and based on loess dust. Loess is a wind-blown dust sediment formed by progressive accumulation and composed generally of clay, sand and silt (approximately a ratio of 20:40:40 respectively), loosely cemented by calcium carbonate.

The dust concentration in the troposphere increased during every cold period in ice ages and reached a multiple of today's levels (Martínez-Garcia et al., 2011). Dust deposition in the Southern Ocean during glacial periods was 3 to 10 times greater than during interglacial periods, and its major source region was probably Australia or New Zealand (Lamy et al., 2014). The windblown dust and its iron content effect on marine productivity in the Southern Ocean is thought to be a key determinant of atmospheric CO₂ concentrations (Maher and Dennis, 2001). During high dust level periods, the global average temperature fell down to 10°C (Lamy et al., 2014; Martin, 1990; Martínez-Garcia et al., 2011), which is 4.5°C lower than current global average temperature. Loess sediments in the northern and southern hemisphere on continents and ocean floors originate from these cold dusty periods.

Former geoscientists had the predominant conception that the cold glacial temperatures had caused dustiness, and not the reverse (Maher et al., 2010). Meanwhile more evidence accumulates that mineral dust was a main factor in the cause of the cold periods and that the iron (Fe) fraction of wind-blown dust aerosol fertilized the oceans' phytoplankton, activating the assimilative conversion of CO₂ into organic carbon (Anderson et al., 2014; Lamy et al., 2014; Martin, 1990) (Maher et al., 2010; Martínez-García et al., 2014; Ziegler et al., 2013) and carbonate which composes the main dry body substance of phytoplankton, together with silica, another component of dust (Tréguer and Pondaven, 2000). Evidence about the responsibility of iron-containing dust that triggered ice ages during the late Paleozoic epoch are in discussion (Sur et al., 2015).

The process of iron fertilization by injection of iron salt solution into the ocean surface had already been in discussion as an engineering system scheme proposed to mitigate global warming (Smetacek and Naqvi, 2008). But iron fertilization experiments with FeSO₄ conducted over 300 km² into the Subantarctic Atlantic Ocean, although they doubled primary productivity of Chlorophyll a, did not enhance downdraft particles' flux into the deep ocean (Martin et al., 2013). The researchers attribute the lack of fertilization-induced export to the limitation of silicon needed for diatoms. Thus, ocean fertilization using only iron can increase the uptake of CO₂ across the sea surface, but most of this uptake is transient and will probably not conduct to long-term sequestration (Williamson et al., 2012). In other experiments, the authors (Smetacek et al., 2012) find that iron-fertilized diatom blooms may
Sequester carbon for centuries in ocean bottom water, and for longer in the sediments, as up to half the diatom bloom biomass sank below 1 km depth and reached the sea floor. Meanwhile dissolution of olivine, a magnesium-iron-silicate, with a Mg:Fe ratio of nearly 9:1, and containing silica, conducted to 35% marine carbon uptake (with the hypothesis of 1% of the iron dissolved and biologically available), with communities of diatoms being one of the phytoplankton winners (Köhler et al., 2015).

The small content of water-soluble iron salts (IS) in the dust particles triggers this fertilization effect (Duggen et al., 2007) and the soluble iron deposition during glaciations had been up to 10 x modern deposition (Conway et al., 2015). According to Spolaor (Spolaor et al., 2013), most of the bioavailable water soluble Fe(II) has been linked, during the last 55,000 years, to the fine dust fraction, as it was demonstrated from ice cores from Antarctica. During late Paleozoic epochs, glacial stage dust fluxes of ~400 to 4,000 times those of interglacial times had been found (Soreghan et al., 2014), which gives an estimated carbon fixation ~2-20 times that of modern carbon fixation due to dust fertilization. Photochemistry sunshine is the main trigger of the transformation of the primary insoluble iron fraction of dust aerosols into soluble iron salt (Johnson and Meskhidze, 2013), and the understanding of how the different iron content and speciation in aerosols affect the climate is growing (Al-Abadleh, 2015). Currently, increased subglacial melt water and icebergs may supply large amounts of bioavailable iron to the Southern Ocean (Death et al., 2014). The flux of bioavailable iron associated with glacial runoff is estimated at 0.40–2.54 Tg per year in Greenland and 0.06–0.17 Tg per year in Antarctica (Hawkings et al., 2014), which are comparable with Aeolian dust fluxes to the oceans surrounding Antarctica and Greenland, and will increase by enhanced melting in a warming climate. But CO₂ uptake by the oceans is not the only effect of iron dust.

The full carbon cycle is well described in the literature; meanwhile the iron biogeochemical cycle is only described in the ocean by few scientific publications (Boyd and Ellwood, 2010; Mahowald et al., 2005; Mahowald et al., 2009). This review aims to describe the multi-stage chemistry of the iron cycle on the atmosphere, oceans, land, sediments and ocean crust. This article is a comprehensive review of the evidence for connections between the carbon cycle and the iron cycle and their direct and indirect planetary cooling effects. Numerous factors influence the Fe-cycle and the iron dissolution: iron speciation, photochemistry, biochemistry, red-ox chemistry, mineralogy, geology. In order to perform an accurate prediction of the impact of Fe-containing dusts, sea salt, and acidic components, the atmospheric chemistry models need to incorporate all relevant interaction compartments of the Fe-cycle with sun radiation, chlorine, sulphur, nitrogen and water. This review advocates a balanced approach to make profit of the Fe-cycle to fight global warming by enhancing natural processes.
The next three sections describe about a dozen different climate cooling processes induced by iron salt aerosols (ISA) and their interaction for modelling parameter development (sections 2, 3 and 4). Then estimation of the requirements in terms of ISA, to stop global warming will be given in section 5, followed by the description of a suggested ISA enhanced method to fight global warming and induce planetary cooling in section 6, followed by a general discussion and concluding remarks in section 7. To our knowledge, this review completes the previous global iron cycle vision of Parekh (Parekh et al., 2004) and advocates a balanced approach to make profit of the iron cycle to fight global warming by enhancing natural processes.

Components of the different natural cooling mechanism by ISA

The best known cooling process induced by ISA is the phytoplankton fertilizing stage described in the introduction. But this process is only part of a cascade of at least 12 climate cooling stages presented in this article. These stages are embedded within the coexisting multi-component complex networks of different reciprocal iron induced interactions across the borders of atmosphere, surface ocean, sediment and igneous bedrock as well as across the borders of chemistry, biology, and physics and across and along the borders of illuminated, dark, gaseous, liquid, solid, semi-solid, animated, unanimated, dead and different mix phase systems. Some impressions according to the complexity of iron acting in the atmospheric environment have been presented by Al-Abadleh (Al-Abadleh, 2015).

The ISA-induced cooling effect begins in the atmosphere. Each of the negative forcing stages unfolds a climate-cooling potential for itself. Process stages 1-6 occur in the troposphere (chapter 2), stage 6 at sunlit solid surfaces, stages 7-8 in the ocean (chapter 3), and stages 9-12 in the oceanic sediment and ocean crust (chapter 4). The 12 stages of this cooling process cascade operate as described below.

2. Tropospheric natural cooling effects of the iron cycle

2.1. ISA-induced cloud albedo increase

Aerosols have a climate impact through aerosol–cloud interactions and aerosol–radiation interactions (Boucher, 2015). By reflecting sunlight radiation back to space, some types of aerosols increase the local albedo (which is the fraction of solar energy that is reflected back to space), producing a cooling effect (Bauer and Menon, 2012). If the top of clouds reflect back a part of the incident solar radiation received, the base of clouds receive the longwave radiation emitted from the Earth surface and reemit downward a part of it. Usually, the higher a cloud is, in the atmosphere, the greater its effect on enhancing atmospheric greenhouse
warming, and therefore the overall effect of high altitude clouds, like cirrus, is a positive forcing. Meanwhile, the net effect of low altitude clouds (stratocumulus) is to cool the surface, as they are thicker and prevent more sunlight from reaching the surface. The overall effect of other types of clouds like cumulonimbus is neutral: neither cooling nor warming.

More outgoing long-wave radiation is possible when the cirrus cover is reduced. Efficient ice nuclei (such as bismuth tri-iodide) seeding of cirrus cloud might artificially reduce their cover (Mitchell and Finnegan, 2009; Storelvmo et al., 2013).

In order to enhance the cooling effects of low altitude clouds, marine cloud brightening has been proposed (Latham et al., 2012a), for instance by injecting sea salt aerosols over the oceans. The effect depends on both particle size and injection amount, but a warming effect is possible (Alterskjær and Kristjánsson, 2013).

Aerosol effects on climate are complex because aerosols both reflect solar radiation to space and absorb solar

Manuscript under review for journal Earth Syst. Dynam.
Published: 10 August 2016
© Author(s) 2016. CC-BY 3.0 License.
Figure 1. Process of tropospheric cooling by direct and indirect increasing of the quantity of different cloud condensation nuclei (CCN) inducing albedo increase by cloud formation at low supersaturation, cloud whitening and cloud life elongation.

Additional to climate cooling effects, CCN-active aerosols might induce a weakening of tropical cyclones. The cooling potential of the ocean surface in regions of hurricane genesis and early development, by cloud whitening potential (Latham et al., 2012b) shall be casual. Further effects like delayed development, weakened intensity, early dissipation, and increased precipitation have been found (Wang et al., 2014c; Zhang et al., 2009).

2.2. Oxidation of methane and further GHGs

Currently, methane (CH$_4$) in the troposphere is destroyed mainly by the hydroxyl radical °OH. Only 3 to 4 % CH$_4$ (25 Tg/yr) become oxidized by °Cl in the troposphere (Allan et al., 2007; Graedel and Keene, 1996).

Absorption of photons by semi-conductor metal oxides can provide the energy to produce an electron-hole pair able to produce either a reduced or an oxidized compound. At suitable conditions UV and visible light can reduce a variety of metal ions in different environments (Monico et al., 2015; Oster and Oster, 1959) (Thakur et al., 2015). Photo-reduced metal compounds may further act as effective chemical reductants (Ola and Maroto-Valer, 2015; Xu et al., 2015) and the oxidized compounds like hydroxyl radicals or chlorine atoms, can further
act as effective oxidants. Zamaraev et al. (Zamaraev et al., 1994) proposed the decomposition of reducing atmospheric components like methane by photolytically induced oxidation power of the oxides of iron, titanium and some further metal oxide containing mineral dust components. In this sense Zamaraev designated the dust generating deserts of the globe as “kidneys of the earth” (Zamaraev, 1997) and the atmosphere as a giant photocatalytic reactor where numerous physicochemical and photochemical processes occur. Researches have proposed giant photocatalytic reactors to clean the atmosphere of several GHGs, like N\textsubscript{2}O (de Richter et al., 2016b), CFCs and HCFCs (de Richter et al., 2016a) and even CO\textsubscript{2} after direct air capture (Kiesgen de Richter et al., 2013), as almost all GHGs can be transformed or destroyed by photocatalysis (de Richter and Caillol, 2011).

Oeste suggested (Oeste, 2004) and Wittmer et al. confirmed (Wittmer et al., 2015a; Wittmer et al., 2015b; Wittmer and Zetzsch, 2016) the emission of methane depleting chlorine atoms. This can be induced by 3 ways: sunlight photo reduction of Fe(III) to Fe(II) from FeCl\textsubscript{3} or FeOOH containing salt pans, from FeCl\textsubscript{3} or FeOOH-containing sea spray aerosols and from pure FeOOH aerosol in contact with air containing ppbv amounts of HCl. Because the H abstraction from the GHG CH\textsubscript{4} as the first oxidation step by °Cl is at least 16 times faster compared to the oxidation by °OH, which is the only CH\textsubscript{4} oxidant acting in the ISA-free atmosphere, concentration of CH\textsubscript{4} can be significantly reduced by ISA emission. Figure 2 illustrates by a simplified chemical reaction scheme this climate cooling mechanism by the ISA method: a direct cooling of the troposphere by methane oxidation induced by ISA particles.
Figure 2. simplified chemical reaction scheme of the generation of chlorine radicals by iron salt aerosols under sunlight radiation and the reaction of the chlorine radicals with atmospheric methane.

At droplet or particle diameters below 1 µm, between 1 µm and 0.1 µm, contact or
coagulation actions between the particles within aerosol clouds are retarded (Ardon-Dryer et al., 2015; Rosenfeld and Freud, 2011; Santachiara et al.; Wang et al., 1978). Otherwise the aerosol lifetime would be too short to bridge any intercontinental distance or even arrive in polar regions. That reduces the possible Cl⁻ exchange by particle contact. But absorption of gaseous HCl by reactive iron oxide aerosols resulting in Fe(III) chloride formation at the particle surfaces is possible (Wittmer and Zetzsch, 2016). Gaseous HCl and further gaseous chloro-compounds are available in the troposphere: HCl (300 pptv above the oceans and 100 pptv above the continents) (Graedel and Keene, 1996), ClNO₂ (up to 1500 pptv near flue gas emitters) (Osthoff et al., 2008; Riedel et al., 2014) and CH₃Cl (550 pptv remote from urban sources) (Khalil and Rasmussen, 1999; Yokouchi et al., 2000). By or after sorption and reactions like photolysis, oxidation, and reduction, any kind of these chlorine species can induce chloride condensation at the ISA particle surface. Acid tropospheric aerosols and gases like H₂SO₄, HNO₃, oxalic acid, and weaker organic acids further induce the formation of gaseous HCl from sea-salt aerosol (Drozd et al., 2014; Kim and Park, 2012; Pechtl and von Glasow, 2007). Since 2004, evidence and proposals for possible catalyst-like sunshine-induced heterogeneous reaction between Fe(II), Fe(III), Cl⁻, °Cl, and HCl fixed on mineral dust particles and in the gaseous phase on the CH₄ oxidation are known (Oeste, 2004; Wittmer and Zetzsch, 2016). Further evidence of sunshine-induced catalytic cooperation of Fe and Cl came from the discovery of °Cl production and CH₄ depletion in volcanic eruption plumes (Baker et al., 2011; Rose et al., 2006). Wittmer et al. presented sunshine-induced °Cl production by iron oxide aerosols in contact with gaseous HCl (Wittmer and Zetzsch, 2016). Further evidence comes from °Cl found in tropospheric air masses above the South China Sea (Baker et al., 2015). It is known that the troposphere above the South China Sea is often in contact with Fe-containing mineral dust aerosols (~18 g m⁻² a⁻¹) (Wang et al., 2012). This is further evidence that the Fe oxide-containing mineral dust aerosol might be a source for the °Cl content within this area.

HCl, water content and pH within the surface layer of the aerosol particles depend on the relative humidity. Both liquid contents, H₂O and HCl, grow with increasing humidity (von Glasow and Sander, 2001). In spite of growing HCl quantity with increasing humidity, pH increases because of decreasing HCl concentration within the surface layer. Hence, since the radiation induced °Cl production decreases with decreasing pH, the °Cl emission decreases in humid conditions (Wittmer and Zetzsch, 2016). Under dry conditions, even sulphate may be fixed as solid Na-sulphate hydrates. Solubilized sulphate slightly inhibits the iron induced °Cl production (Bleicher et al., 2014).

Night or early morning humidity produces similarly the maximum chloride content on the liquid aerosol particles surface. During day time, the humidity decrease induces ISA photolysis and Cl⁻ conversion to °Cl production by decreasing water content and pH. The ISA
particle surface layer comes to Cl\(^{-}\) minima levels during or after noon hours. In the continental troposphere low sea salt aerosol level, these effects enable the pure ISA iron oxide aerosol particles to coat their surface with chloride solution at night and to produce chlorine atom emission at daytime.

Freezing has different effects on the primary wet ISA particles. Changing by CCN action to cloud droplets with solubilized chloride and iron content and when arriving to freezing conditions, the frozen ice becomes covered by a mother liquor layer with elevated concentration of both iron and chlorine. Some acids like HCl do not decrease the mother liquor pH proportional to concentration and the behavior of the ice surfaces, grown from low salt content water, are different from high salt content water, thus the different kinds of ISA shall behave differently. (Bartels-Rausch et al., 2014; Kahan et al., 2014; Wren and Donaldson, 2012). Direct measurements of molecular chlorine levels in the Arctic marine boundary layer in Barrow, Alaska, showed up to 400 pptv levels of molecular chlorine (Liao et al., 2014). The Cl concentrations fell to near-zero levels at night but peaked in the early morning and late afternoon. The authors estimated that the Cl radicals oxidized on average more CH\(_4\) than hydroxyl radicals, and enhanced the abundance of short-lived peroxy radicals.

Further investigations have to prove how the different types of ISA particles behave in clouds below the freezing point or in the snow layer at different temperatures: the primary salt-poor Fe-oxide, the poor FeCl\(_3\)-hydroyzed and the FeCl\(_3\)-NaCl mixture, because the \(^{35}\)Cl emission depends on pH, Fe and Cl concentration.

Additional to iron photolysis, in a different and day-time independent chemical reaction, iron catalyzes the formation of \(^{35}\)Cl or Cl\(_2\) from chloride by tropospheric ozone (Sadanaga et al., 2001). Triggering the methane decomposition, both kinds of iron and chlorine have a cooperative cooling effect on the troposphere: less GHG methane in the atmosphere reduces the GH effect and allows more outgoing IR heat to the outer space.

These reactions had been active during the glacial period: Levine et al. (Levine et al., 2011) found elevated \(^{13}\)CH\(_4\) / \(^{12}\)CH\(_4\) isotope ratios in those Antarctic ice core segments representing coldest glacial periods. The much greater \(^{35}\)Cl preference for \(^{13}\)CH\(_4\) oxidation than \(^{12}\)CH\(_4\) oxidation than by the \(^{35}\)OH is an explanation for this unusual isotope ratio. Additional evidence gives the decreased CH\(_4\) concentration during elevated loess dust emission epochs (Skinner, 2008).

As shown in more detail in the next section 2.3 ISA produces \(^{35}\)Cl and much more hydrophilic \(^{35}\)OH and ferryl as further possible CH\(_4\) oxidants by the Fenton and photo-Fenton processes (Al-Abadleh, 2015). To gain the optimal reaction conditions within the heterogeneous gaseous / liquid / solid phase ISA system in the troposphere the reductant (methane) and oxidant (Fenton and photo-Fenton oxidant) have to be directed in a way, that oxidant and
reductant can act within the identical medium.

Table 1: the Henry’s law constants (Sander, 2015) for the different components of the ISA.

<table>
<thead>
<tr>
<th>Element</th>
<th>Henry’s law constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH4</td>
<td>1.4×10^{-5} mol m$^{-3}$ Pa$^{-1}$</td>
</tr>
<tr>
<td>°Cl</td>
<td>2.3×10^{-2} mol m$^{-3}$ Pa$^{-1}$</td>
</tr>
<tr>
<td>°OH</td>
<td>3.8×10^{-1} mol m$^{-3}$ Pa$^{-1}$</td>
</tr>
<tr>
<td>Fe(II), Fe(III), Fe(IV)</td>
<td>>10^6 mol m$^{-3}$ Pa$^{-1}$</td>
</tr>
</tbody>
</table>

As seen on table 1, according to the CH$_4$ Henry’s law constant the preference of the 1.8 ppm tropospheric CH$_4$ is undoubtedly the gaseous phase. °Cl has a preference for the gaseous phase. Iron is completely part of the liquid or solid phase, so the Henry’s law constant is estimated to more than 10^6 mol m$^{-3}$ Pa$^{-1}$ (Sander, 2015). While ferryl keeps tightly bound to the condensed phases °OH may change into the gaseous phase (Nie et al., 2014) and may contribute to the oxidation of CH$_4$ during clear dry conditions without liquid phase at the Fe(III) surfaces. Like the water-soluble Ammonia (5.9×10^{-1}), °OH has a similar Henry’s law constant. Therefore °OH has the tendency to stay within hydrous phases during humid conditions. This tendency is 16 times lower for °Cl. This property is combined with the 16 times higher reactivity in comparison to °OH. At an equal production of °Cl and °OH, the reaction of °Cl with CH$_4$ has a probability of up to 250 times (16 x 16) that of °OH with CH$_4$ when the ISA particles are wet and 16 times that of °OH with CH$_4$ when the ISA particles are dry. The probability of CH$_4$ oxidation by ISA derived °Cl against ISA derived °OH, may be restricted by the pH increase tendency within ISA during humid episodes (decreased °Cl generation on ISA with rising pH), to values fluctuating between the extremes 1 and 250. Independent of the kind of oxidants produced by ISA – during dry, clear sky, and sunshine episodes - the ISA deriving oxidants produce maximum oxidant concentrations within the CH$_4$-containing gaseous phase, producing optimum CH$_4$ depletion rates.

The °Cl reactivity on most VOC other than CH$_4$ is at least one order of magnitude higher than that of °OH (Young et al., 2014). Halogen organics like dichloromethane (Pena et al., 2014) as well as the environmental persistent and bioaccumulating perfluoro organics like perfluoro octane sulphonate may be depleted by sunlit ISA (Jin et al., 2014).

2.3. Oxidation of organic aerosol particles containing black and brown carbon

Andreae & Gelencsér (Andreae and Gelencsér, 2006) defined the differences between the carbons: black carbon contains insoluble elemental carbon, brown carbon contains at least...
partly soluble organic carbon. Black carbon contains as well additional extractable organics of more or less volatility and/or water-solubility (Andreae and Gelencsér, 2006; Nguyen and Ball, 2006).

Black and brown carbonaceous aerosols have a positive radiative forcing (warming effect) on clouds (Ramana et al., 2010) as seen in sub-section 2.1, and also after deposition on snow, glaciers, sea ice or on the polar regions, as the albedo is reduced and the surface is darkened (Hadley and Kirchstetter, 2012). One of the most effective methods of slowing global warming rapidly on short-term is by reducing the emissions of fossil-fuel particulate black carbon, organic matter and reducing of tropospheric ozone (Jacobson, 2002).

Both aerosol types have adverse effects to health (human, animal, livestock, vegetal) and reducing its levels will save lives and provide many benefits (Shindell et al., 2012). Thus any tropospheric lifetime reduction of both dark carbons would gain cooling effects and further positive effects.

Both carbons are characterized by aromatic functions. The black carbons contain graphene structures, the brown ones have low-molecular weight humic-like aromatic substances (HULIS). HULIS derive from tarry combustion smoke residues and/or from aged secondary organic aerosol (SOA). The source of SOA are biogenic VOCs like terpenes (Fry et al., 2014). HULIS contain polyphenolic red-ox mediators like catechol and nitro-catechols (Claeys et al., 2012; Hoffer et al., 2004; Ofner et al., 2011; Pillar et al., 2014).

The polyphenolic HULIS compounds are ligands with very strong binding to iron. Rainwater-dissolved HULIS prevent Fe(II) from oxidation and precipitation when mixing with seawater (Willey et al., 2008). Wood smoke derived HULIS nano-particles penetrate into living cell walls of respiratory epithelia cells. After arrival in the cells the HULIS particles extract the cell iron from the mitochondria by formation of HULIS iron complexes (Ghio et al., 2015).

Beside iron, other metals like manganese and copper have oxygen transport properties which improve the oxidation power of H₂O₂ by Fenton reactions generating *OH (Chemizmu and Fenton, 2009). H₂O₂ is a troposphere-borne oxidant (Vione et al., 2003).

Polyphenolic and carboxylate ligands of HULIS enhance the dissolution of iron oxides. These ligands bind to undissolved iron oxides (Al-Abadleh, 2015).

Iron and catechols are both reversible electron shuttles:

\[\text{Fe}^{2+} \leftrightarrow \text{Fe}^{3+} + \text{e} \quad (\text{Eq. 1}) \]
\[\text{catechol} \leftrightarrow \text{quinone} + 2\text{e} \quad (\text{Eq. 2}) \]

The HULIS – iron connection enhances the oxidative degradation of organic compounds like aromatic compounds (Al-Abadleh, 2015).

Oxidant generation by reaction of oxidizable dissolved or un-dissolved metal cations like Fe(II), Cu(I) and Mn(II) with H₂O₂ had first been discovered for instance for Fe(II) in 1894.
(Fenton, 1894). Since then these reactions are known as Fenton reactions. Mechanisms and generated oxidants of the Fenton reactions are still under discussion.

According to the participating metal ligand oxidants like \({\cdot}OH, \text{Fe}^{(IV)}\text{O}^{2+} (= \text{Ferryl}), \text{Cl}^{\cdot}, \text{SO}_4^{2-}, \) organic peroxides and quinones may appear (Barbusiński, 2009).

According to Barbusinsky et al. the primary reaction intermediate from \(\text{Fe}^{2+} \) and \(\text{H}_2\text{O}_2 \) is the adduct \(\{\text{Fe}(\text{II})\text{H}_2\text{O}_2\}^{2+} \) which is transformed into the ferryl complex \(\{\text{Fe}(\text{IV})(\text{OH})_2\}^{2+} \). The latter stabilizes as \(\{\text{Fe}(\text{IV})\text{O}\}^{2+} + \text{H}_2\text{O} \). Reductants may also react directly with \(\{\text{Fe}(\text{IV})\text{O}\}^{2+} \) or after its decomposition to \(\text{Fe}^{3+} + \ {\cdot} \text{OH} + \text{OH}^- \) by \(\text{H}_2\text{O}_2 \). \(\text{Fe}^{3+} \) reacts with \(\text{H}_2\text{O}_2 \) to \(\text{Fe}^{2+} \) via \(\text{O}_2^{\cdot} \text{H} \) development; the latter decays into \(\text{O}_2 + \text{H}_2\text{O} \).

Light enhances the Fenton reaction effectiveness. It reduces \(\text{Fe}^{3+} \) to \(\text{Fe}^{2+} \) by photolysis inducing \(\text{Cl}^{\cdot} \) generation, the latter in the case of available \(\text{Cl}^- \), which reduces the \(\text{H}_2\text{O}_2 \) demand (Machulek Jr et al., 2009; Southworth and Voelker, 2003).

This process is illustrated by figure 3.

Figure 3. Schematic representation of the cooling of the troposphere, by inducing the decrease of ozone and organic aerosol particles like soot and smoke.

The Fenton reaction mechanism is dependent on pH and on the kinds of ligands bound to the Fenton metal. The reaction mechanism or oxidants of \(\text{SO}_4^{2-}, \text{NO}_3^-, \text{Cl}^- \) and 1,2-dihydroxy benzene ligands had been studied (De Laat et al., 2004).
In biological systems, 1,2-dihydroxy benzenes (catecholamines) regulate the Fenton reaction and orient it toward different reaction pathways (Salgado et al., 2013).

Additionally, the fractal reaction environments like surface rich black and brown carbons and ISA are of considerable influence on the Fenton reaction. By expanding the aqueous interface, accelerations of the reaction velocity up to three orders of magnitude had been measured (Enami et al., 2014). This may be one of the reasons why iron-containing solid surfaces made of fractal iron oxides, pyrite, activated carbon, graphite, carbon nanotubes, vermiculite, pillared clays, zeolites have been tested as efficient Fenton reagents (Pignatello et al., 2006; Pinto et al., 2012; Teixeira et al., 2012).

Even the oxidation power of artificial Fenton and photo-Fenton systems is known to be high enough to hydroxylate aliphatic C-H bonds, inclusive CH$_4$ hydroxylation to methanol (Gopakumar et al., 2011; Hammond et al., 2012; Yoshizawa et al., 2000).

But the HULIS itself becomes depleted by the Fenton oxidation when it remains as the only reductant (Salgado et al., 2013).

Like HULIS or humic substances, the different kinds of black carbons act as red-ox mediators because of their oxygen functionalities bound to the aromatic hexagon network like hydroxyl, carbonyl, and ether (Klüpfel et al., 2014; Oh and Chiu, 2009). These functionalities act similarly as hydroquinone, quinone, aromatic ether, pyrylium and pyrone at the extended graphene planes as electron acceptor and donor moieties. Soot also possesses such red-ox mediator groups (Drushel and Hallum, 1958; Studebaker et al., 1956). Again these are ligands with well-known binding activity on iron compounds. Their difference to the HULIS ligands is that they are attached to stacks of aromatic graphene hexagon networks instead of mono- or oligo-cyclic aromatic hexagons of HULIS. As well as the HULIS red-ox mediator ligands these hydroxyl and ketone groups transfer electrons from oxidants to reductants and vice versa. Like the HULIS – iron couple, the black carbon - iron couple enhances the red-ox mediation above the levels of every individual electron shuttle (Kim et al., 2013; Lima et al., 2013; Wang et al., 2014b). Accordingly, any ISA doping of black carbons generates effective oxidation catalysts (Oeste, 1977; Song et al., 2015).

Lit by sunlight the ISA doped soot represents an oxidation catalyst to adsorbed organics producing its own oxidants by the photo-Fenton reaction. In spite of the higher chemical stability of the graphene network of soot compared to HULIS soot, by wet oxidation further oxygen groups are fixed to the soot graphene stacks (Moreno-Castilla et al., 2000) increasing soot's hydrophilic property, which is necessary to arrange its rain-out. The hydroxyl radical attack resulting from the photo Fenton reaction at last breaks the graphene network into parts (Bai et al., 2014; Zhou et al., 2012). Photo-Fenton is much more efficient in *OH generation than Fenton, because Fe(III) reduction as regeneration step occurs by Fe(III) photo reduction, rather than consuming an organic reductant.
The oxidized hydrophilic carbon particles are more readily washed out of the atmosphere by precipitation (Zuberi et al., 2005). ISA accelerates this oxidation process because the iron-induced Fenton and photo-Fenton reaction cycles produce hydroxyl and chlorine radical oxidants, speeding up the soot oxidation.

Fe(III) forms colored complexes with hydroxyl and carboxylic hydroxyl groups too, particularly if two of them are in 1,2 or 1,3 position, like oxalic acid. The latter belong to the group of dicarboxylic acids known to be formed as oxidation products from all kind of volatile, dissolved or particular organic carbons in the atmosphere (Kawamura et al., 2003). Dicaboxide complexes with iron are of outstanding sensitivity to destruction by photolysation (Eder, 1880, 1906; Weller et al., 2014; Zhu et al., 1993): photolysis reduces Fe(III) to Fe(II) by producing H$_2$O$_2$ and oxidation of the organic complex compounds. Then Fe(II) is re-oxidized to Fe(III) by H$_2$O$_2$ in the Fenton reaction by generation of °OH (Cunningham et al., 1988). According to their elevated polarity oxidation products containing hydroxyl and carboxyl groups have increased wettability, are more water soluble and are thus rapidly washed out from the atmosphere.

Because of their elevated reactivity compared to CH$_4$ the gas phase oxidation of airborne organic compounds by ISA-generated °OH or °Cl is enhanced. By eliminating black and brown carbon aerosols, ISA contributes to global warming reduction and to decreasing polar ice melting by surface albedo reduction caused by black-carbon snow contamination (Flanner et al., 2007; Ramanathan and Carmichael, 2008). The generation of ISA by combusting fuel oil with ferrocene or other oil soluble iron additives in ship engines or heating oil burners has additional positive effects, because soot becomes catalytically flame-oxidized in the presence of flame-borne ISA (detailed in chapter 6) as a combustion product of the iron additive (Kasper et al., 1998; Weiser et al.).

2.4. Tropospheric Ozone depletion by ISA

An additional GHG is the tropospheric ozone (Jacobson, 2002). Since long, °Cl and °Br are known as catalysts for ozone destruction in the Stratosphere (Crutzen and Oppenheimer, 2008). Investigations both in laboratory and nature have shown that °Br is a much more active catalyst of ozone depletion within the troposphere than °Cl (Le Bras and Platt, 1995; Liao et al., 2014; Wayne et al., 1995). The ISA-induced increase of °Br concentration at sea-salt containing tropospheric conditions has been confirmed (Wittmer et al., 2015a). This establishes ISA as part of an ozone-depleting reaction cycle and additional cooling stage. This depletion effect of the GHG tropospheric ozone is worth noting.

As discussed at the end of chapter 2.6 clear evidence exists, that the ozone depleting “bromine explosions” known as regular phenomenon developing from cost-near snow layers...
at sunrise in the polar spring (Blechschmidt et al., 2016; Pratt et al., 2013) are likely to be induced by the photolyzed precipitation of iron containing dust. According to Pratt bromide enriched brines covering acidified snow particles become oxidized by photolysis to °Br.

2.5. ISA induced phytoplankton fertilization albedo increase (by enhancing DMS-emissions) and CH₄ oxidation efficiency (by increasing MC- and DMS-emissions)

One of the largest reservoirs of gas-phase chlorine is the about 5 Tg of methyl chloride (MC) in the Earth’s atmosphere (Khalil and Rasmussen, 1999). Methyl-chloride is released from phytoplankton (Hu et al., 2013) and from coastal forests, terrestrial plants and fungi (Khalil et al., 1999).

Dimethylsulphide (DMS) is a volatile sulphur compound that plays an important role in the global sulphur cycle. Through the emission of atmospheric aerosols, DMS may control climate by influencing cloud albedo (Charlson et al., 1987).

Currently, researchers (Lana et al., 2011) estimate that 28.1 (17.6–34.4) Tg of sulphur in the form of DMS are transferred annually from the oceans into the atmosphere. Ocean acidification has the potential to exacerbate anthropogenic warming through reduced DMS emissions (Six et al., 2013). On the contrary, increased emissions of DMS and MC into the troposphere are a consequence of the ISA-induced phytoplankton growth and DMS + MC release into the troposphere. DMS is oxidized in the troposphere to sulphuric and sulphonic acid aerosols, which are highly active CCN. This process enhances the direct ISA cooling effect according to cooling section 2.1 (Charlson et al., 1987).

In contact with this acidic aerosol with sea spray aerosol, sulphate and sulphonate aerosols are formed and gaseous HCl is produced. Sulphate aerosols are known to have a negative radiative forcing (a cooling effect) (Crutzen, 2006).

A further HCl source is the oxidation of MC. Both effects induce the tropospheric HCl level to rise. According to cooling stage described in section 2.2, with the risen HCl level, additional chlorine atoms are produced by reaction with ISA. This effect further accelerates the methane oxidation and its removal from the atmosphere, reducing its radiative forcing.

2.6. Oxidation of CH₄ and further GHGs by sunlit solid surfaces

Mineral aerosol particles adhere strongly to sunlit, dry and solid surfaces of rocks and stones. A well-known remnant of the dust deposit in rock or stone deserts and rocky semi-arid regions is the orange, brown, red or black colored “Desert Varnish” coat covering stones and rocks. The hard desert varnish is the glued together and hardened residue of the primary dust deposit. Daily sun radiation and humidity change, as well as microbe and fungi influence grows up the varnish changing the primary aerosol deposit (Perry et al., 2005) by photolytic Fe(III) and Mn(IV) reduction during daytime and night time oxidation of Fe(II) and Mn(II). The
oxidation is triggered further by Mn and Fe oxidizing microbes adapted to this habitat (Allen et al., 2001; Hungate et al., 1987). Desert varnish preserves the Fe and Mn photo reduction ability of the aerosol: lit by light the varnish can produce chlorine from chloride containing solutions (Johnson and Eggleston, 2013). The photo, humidity, and microbial induced permanent Fe and Mn valence change between night and day (Matsunaga et al., 1995) accompanied by adequate solubility changes seem to trigger the physico-chemical hardening of every new varnish layer.

The varnish is composed of microscopic laminations of Fe and Mn oxides. Fe plus Mn represent about 1/5 of the varnish. Meanwhile 4/5 of the laminations are composed of SiO₂, clay and former dust particles. Dominant mineral is SiO₂ and/or clay (Dorn, 2009; Liu and Dorn, 1996). There is little doubt that desert varnish can build up even from pure iron oxides or iron chloride aerosol deposits like ISA. The optimum pH to photo-generate the methane oxidizing chlorine atoms from ISA is pH 2 (Wittmer et al., 2015a). Established by the gaseous HCl content of the troposphere (Graedel and Keene, 1996), a pH drop to pH 2 at the varnish surface is possible on neutral alkaline-free surfaces like quartz, quartzite and sandstone. The humidity controlled mechanism acting between gaseous HCl and HCl dissolved in the liquid water layer absorbed on the solid iron oxide surface of ISA particles as explained in the section 2.2 acts at the varnish surface analogue: a FeCl₃ stock can pile up by Fe(II) oxidation and humidity-triggered HCl absorption during night time. The FeCl₃ stock at the varnish surface is consumed during daytime by photolytic Fe(II) and chlorine atom generation.

ISA aerosol particles emit HCl during dry conditions. Like oxidic ISA desert varnish absorbs H₂O and HCl from the atmosphere gathering it during night time as surface-bound H₂O, OH⁻, and Cl⁻ coat. During sunlit day time, chloride and water desorbs from Fe(III) as °Cl, °OH and H₂O, leaving Fe(II) in the varnish surface. The surface Fe(II) (and Mn(II)) is bound by oxygen bridges to the varnish bulk of Fe(III) (and Mn(IV)); may be like the combination of Fe(II) and Fe(III) within magnetite. During night time the Fe(III) (and Mn(IV)) surface coat is regenerated by microbial and/or abiotic oxidation with O₂. It is worth mentioning, that desert varnish can exist only within dry regions.

Figure 4 illustrates the interactions of ISA at the phase borders of tropospheric aerosols, ocean surface, and dry solid surfaces.
Figure 4. Schematic representation of iron salt aerosols interactions with different solid surfaces:

a,b ISA particles composed of FeOOH or FeOOH, H2O, and chloride

c Interaction of reducing and/or red-ox-catalyzing aerosols of soot, HULIS, SOA, MC and DMS with ISA resulting in the lifetime decrease of the reducing aerosols, vapors and gases

d ISA-coated ice crystals

e ISA-coated salt crystals

f snow layer build from ISA containing snow and/or ISA precipitate

g ISA containing cloud or fog droplets

h desert varnish build from precipitating ISA

i precipitating ISA at the ocean surface accelerate the CO2-C conversion into organic and carbonate C plus emission of DMS, MC and SOA by fertilization of the phytoplankton

j the ISA induced DMS, MC and SOA production increase is responsible for an additional production of H2SO4, sulphonic acids and dicarboxylic acids containing aerosol and gaseous HCl. By reaction with sea-spray the acid aerosols produce additional gaseous HCl enhancing the further activation of ISA

Similar daytime dependent microbial activated abiotic photo-reduction and photo-oxidation reaction cycles are known from aquifer environments (Gammons et al., 2007). Thus the methane depletion of the former ISA deposits will persist even after change into desert
varnish. As explained chapter 2.2 continental HCl (300 pptv above the oceans and 100 pptv above the continents) (Graedel and Keene, 1996), ClNO$_2$ (up to 1500 pptv near flue gas emitters) (Osthoff et al., 2008; Riedel et al., 2014) and CH$_3$Cl (550 pptv remote from urban sources) (Khalil and Rasmussen, 1999; Yokouchi et al., 2000) and in deserts chloride salt containing dusts are direct and indirect sources of chloride which could provide desert varnishes with Cl$^-$. Furthermore, analogue to ISA deposited on solid desert surfaces even ISA depositions on dry snow, snow cover and ice occurring in permanent snow-covered Mountain regions or within polar and neighboring regions shall preserve its methane destruction activity during sunlit day, spring, and summer times (Liao et al., 2014).

The global area of the desert varnish surface does not change with changing dust precipitation rates. It only depends on the precipitation frequency. It grows through desertification and shrinks with increasing wet climate. Until now quantitative measurements about the specific amount of methane depletion per square meter of desert varnish are not known. Without these data, estimation about its influence on the methane depletion and climate is impossible.

The photochemical actions inducing CH$_4$ depletion of the desert varnish surfaces resulting from dust precipitation are concurrent with the surfaces of deserts and semi deserts made of sand or laterite soils. Their surface is colored by ochre to red iron oxide pigments. Their iron components should act in principle by the same CH$_4$ depleting photochemistry like ISA and desert varnish.

As mentioned in chapter 2.4 the Cl and Br activation by iron photolysis changes after division of the ingredients by freezing or drying of the former homogenous liquid between solid salt-poor ice and liquid brine coat or solid salt and liquid brine coat. This inhomogeneous partition phenomenon of the predominant transformation of aerosol droplets into solid and vice versa applies even to snow or salt layers containing a proportion of ISA.

It has been shown that even cooling precipitation of the buffering influence of salts like carbonates, sulphates and chlorides of bromide and chloride rich mother liquors on arctic snow packs or ice particles can minimize their buffering capacity against pH change (Bartels-Rausch et al., 2014; Blechschmidt et al., 2016; Sander et al., 2006). Similar mechanisms may act when liquid aerosol particles become solid by drying.

Then the uptake and contact of solid iron-bearing particles and airborne organic and inorganic acids and acid precursors on or with ice crystal surfaces over time may drop the pH of the former alkaline particle surface into the reaction conditions of the bromide oxidation by iron(III) photo reduction.

According to Kim et al. (Kim et al., 2010) the photogeneration of Fe(III) oxides, proceeding slow at pH 3.5 in bulk solution, becomes significant accelerated in polycrystalline arctic ice.
This effect is accompanied by an acceleration of the physical dissolution of the Fe(III)oxides by freezing ice (Jeong et al., 2012; Kim et al., 2010).

The contact of arctic snow layers with iron oxides is confirmed by Kim (Kim et al., 2010). Dorfman (Dorfman et al., 2015) found recent loess dust sedimentation rates in the Alaskan Arctic Burial Lake of 0.15 mm/a. According to the research results from artificial iron doped salt pans (Wittmer et al., 2015b), iron salt doped sea-salt aerosols (Wittmer et al., 2015a), sea-salt doped iron oxide aerosols or pure iron oxide aerosols in contact with gaseous HCl (Wittmer and Zetzsch, 2016), chloride and bromide in sun-lit surfaces become oxidized to °Cl and °Br by photo-reduced Fe(III) if the pH of the reaction media is 3.5 or lower.

As known from the bromine explosions they appear on acidified first-year tundra and first-year sea ice snow lit by sunlight (Pratt et al., 2013). According to Kim et al. and Dorfman et al. the year-old snow layers contain even Iron(III). This confirms, that sufficient reaction conditions exist to produce bromine explosions by oxidation of Iron(III) photoreduction.

Continents have considerable areas where the outflowing water is drained into “endorheic” water bodies and not into the oceans. Endorheic lakes have no outlets other than evaporation and thus dissolved salts and nutrients concentrate over time. Large surfaces of these basins are covered by salt crusts, salt marshes, salty soils, or salt lakes. Most of these areas are situated within desert or semi-desert areas (Hammer, 1986). These salt environments gain iron from precipitating dust or even from iron containing brines they have precipitated from. As far as these environments become acidic they oxidize methane by iron photolysis induced °Cl (Wittmer et al., 2015b).

3. Oceanic natural cooling effects of the iron cycle

3.1. Biotic CO₂ conversion into organic and carbonate carbon

Vegetation uses the oxidative power of organic metal compounds induced by photon absorption oxidizing water to oxygen and reducing CO₂ by organic carbon generation (photosynthesis by chlorophyll, a green Mg-Porphyrin complex). This assimilation process is retarded by prevailing iron deficiency in the oceans which retards the phytoplankton growth. Meanwhile there is no doubt that ISA-containing dust precipitation fertilizes the phytoplankton which in turn affects the climate (Albani et al., 2016).

ISA triggers the phytoplankton reproduction and increases the formation of organic carbon from the GHG CO₂ (Martínez-García et al., 2014). The vast majority of the oxygen thus formed and only slightly water soluble (11 mg O₂ / l) escapes into the atmosphere. In contrast, the formed organic carbon remains completely in the ocean forming the basis of the marine food and debris chain.

From the primary produced phytoplankton carbon only a small fraction arrives at the ocean...
bottom as organic debris and becomes part of the sediment. Cartapanis et al. (Cartapanis et al., 2016) and Jaccard et al. (Jaccard et al., 2016) found direct evidence that during the glacial maxima, the accumulation rate of organic carbon was consistently higher (50%) than during inter-glacials. This resulted from the high dust concentrations during the glacial maxima fertilizing the phytoplankton with ISA.

The build-up of Ca-carbonate shell and frame substances by the calcification process at the ocean surface extracts additional CO$_2$-C from the troposphere. The bulk of calcification can be attributed to corals, foraminifera and coccolithophores; the latter are believed to contribute up to half of current oceanic CaCO$_3$ production (Mackinder et al., 2010).

Both carbon fixation processes increase the removal of the GHG CO$_2$ and thus contribute to cool the troposphere. The Fe-fertilizing process worked during the ice age, as the evaluations of Antarctic ice cores show: the minimum CO$_2$ concentrations and temperatures in the troposphere are connected to the high dust phases (Skinner, 2008).

It has been discussed that the alkalinity loss by phytoplankton calcification and CaCO$_3$ loss with phytoplankton debris from the ocean surface is said to produce calcium and alkalinity deficit at the ocean surface (Meyer and Riebesell, 2015; Rost and Riebesell, 2004) producing additional acidification at the ocean surface by CO$_2$ generation:

\[
\text{Ca(HCO}_3\text{)}_2 \rightarrow \text{CaCO}_3 + \text{H}_2\text{O} + \text{CO}_2
\]

At least in part this acidification is compensated by assimilative generation of organic carbon by CO$_2$ consumption. Both organic debris and CaCO$_3$ become part of the ocean sediment. But if the organic debris is re-oxidized during its journey downwards, some acidification could result. Acidification could result too if more CO$_2$ is absorbed by the ocean, then is assimilated and changed to organic debris. According to the ISA-induced phytoplankton productivity, both, sedimentation of organic debris and CaCO$_3$, increase.

The increasing amount of CaCO$_3$ sedimentation within iron fertilized ocean regions had been discussed by Salter (Salter et al., 2014). In a sufficient mixed ocean, alkalinity loss at the surface is more than compensated by the different sources of alkali and earth alkali cations at the ocean bottom and through continental weathering: in the first place these are the mechanisms of alkalinity generated by the ocean water reactions within the ocean sediments and their bed-rock, the oceanic crust. The latter mechanisms are described in more detail in chapters 4.1 – 4.3. The convection of the primary oxic ocean bottom water through the ocean crust generates alkalinity by reduction of sulphate, nitrate and hydrogen carbonate, by dissolution of silicates by with reduced humic acids and further by serpentinization of basalt and peridotite silicates (Alt and Shanks, 2003; Früh - Green et al., 2004). The alkalinity extracted from the oceanic crust keeps mainly positioned in the dark water layers of the ocean basins if the decreased THC is not able to elevate the alkaline extract into the phytoplankton layer in sufficient quantities.
The THC activation by the ISA method is described in the chapters 4.1 – 4.3. When any time lag induced Ca level decreases by sudden ISA-induced phytoplankton growth the increase does no harm to the phytoplankton because calcium is not essential to phytoplankton. Just the opposite is true: phytoplankton uses the calcification as a detoxification measure to get rid of calcium ions from their bodies (Müller et al., 2015). As a consequence of this effect only the relation between Ca carbonate sequestration and organic carbon sequestration will decrease during the time lag.

By additional direct alkalinity production of the phytoplankton itself at least parts of the acidity production by the lime shell production may be compensated: ISA-controlled phytoplankton growth induce synthesis increase of organic sulphur and of chlorine compounds (Matrai and Keller, 1994), emitted as dimethylsulphide (DMS) and methyl chloride (MC) (Carpenter et al., 2012). Synthesis of organic sulphur and halogen organics as precursors of the volatile DMS and MC emission is realized by the phytoplankton by reduction of sulphate to organic sulphides and oxidation of chloride to carbon chlorine compounds. This precursor synthesis excretes equivalent Na⁺ and/or Ca²⁺ alkalinity, because Na₂SO₄ reduction/formation to DMS generates Na alkalinity; NaCl oxidation/formation to MC generates Na alkalinity too: cations former bound to SO₄²⁻ or Cl⁻ lost their anions producing alkalinity. According to (Chen et al., 1996; Fujita, 1971) the sulphur content of phytoplankton exclusively exceeds the Ca²⁺, Mg²⁺, and K⁺ alkaline load of phytoplankton lost with the phytoplankton debris. Only half of the organic carbon assimilated by phytoplankton derives from dissolved CO₂. The other half derives from the ocean water NaHCO₃ anion content (Cassar et al., 2004). The chemical reduction (reduction of HCO₃⁻ to organic C + O₂ by assimilation of HCO₃⁻ anions produces alkalinity as further compensation of the alkalinity loss by calcification. NaHCO₃ reduction/formation to organic carbon generates Na alkalinity. The cation previously bound to HCO₃⁻ loses its anion and produces alkalinity.

These considerations demonstrate that any of the proposed enhanced weathering measures to prevent ocean acidification by increasing the alkalinity (Taylor et al., 2015) might be not necessary if the ISA method is in action and keeps the vertical ocean mixture sufficiently active. During the down-dripping of the very fine-shaped phytoplankton debris bacterial oxidation, fish and further food chain links minimize the organic debris up to an order of magnitude (Weber et al., 2016). Even the solution of the small carbonate debris reduces the carbonate fraction until arriving at the sediment surface. In order to maximize the effect of the ISA method within the main ISA precipitation regions the oxidation and dissolution of the organic and carbonate phytoplankton debris during its dripping down through the ocean water column can be reduced. To meet this aim we suggest farming fixed filter feeders like mussels and oysters within the ISA precipitation region.
Mussels and oysters produce faeces and so called “Pseudo-faeces” in the shape of rather solid pellets. Compared to the time of sedimentation of the unconditioned phytoplankton debris this expands the sedimentation time difference between excreted filter feeder faeces and the phytoplankton faeces pellets sedimentation on the ocean floor by order of magnitude. Bivalve farming would reduce the oxidative and solution loss of phytoplankton debris attack significantly. Mussel and oyster farming are well-known practices which have been employed for long time as a measure to produce protein rich food. They have even been proposed as an element of climate engineering (Dimitrova et al., 2015; Lenton and Sen Gupta, 2010).

To further optimize the CO₂-C conversion to sediment-bound C the biomass of oysters and mussels including their shells and fixing systems might be periodically dumped into the sediment.

Additional floating supports such as coral habitats, sponges, sea lilies and sea anemones between the mussel supports might complete and again optimize the ISA precipitation areas.

The oceanic water deserts may become changed into productive ecosystems and protein sources for an increasing population by these measures, among others, for an optimized CO₂ fixation induced by ISA.

A further proposal in order to maximize the CO₂ fixation induced by ISA is our suggestion to integrate the solution of the waste problem on the ocean surfaces into the ISA method. About 5 to 13 million metric tons of solid plastic waste per year are entering the oceans (Jambeck et al., 2015). Over the last years the plastic waste drifting on the ocean has developed into a huge problem for the oceanic ecosystems (Law et al., 2014). Even plastic keeps sunlight away from phytoplankton hampering it from effective growth. The plastic waste drifts with the ocean currents. It then collects within accumulation zones predicted by a global surface circulation model (Cózar et al., 2014). Most plastic-covered ocean surfaces are concentrated in central-oceanic regions with low iron content with predestination for applying the ISA method. Because of the trash there would be a reduction in the ISA efficiency so we propose the integration of the plastic depletion problem into our ISA method: On both the side of and outside a container ship vessel specific technology can be installed: plastic trash collection, plastic trash sorting, plastic trash extrusion, plastic trash burning, ISA production and emission. The aforementioned processes are well known and need no description here.

Trash or waste burning has the advantages of delivering an effective hot carrier gas with high buoyancy for uplift of ISA and of delivering HCl as co-catalyst of ISA. With the plastic extruder most carrier parts of floating supports on the reef coral, sponge, and mussel habitats could be produced.

Beside the larger plastic fragments, the floating plastic fine debris with particle diameters in the µm range is a further problem (van Sebille et al., 2015). Instead of doing the micro-trash...
separation by technical means, the mussel and oyster farming may clean away this ocean surface environmental problem. The floating micro-trash particles are collected by the bivalves and excreted as pseudo-faeces pellets and at last become part of the sediment layer at the ocean bottom.

Within the iron cycle, the photolytic driven oxidant production with iron participation may not be reduced to °Cl and °OH in the troposphere and O$_2$ by assimilation: When iron is cycled through the mantle at temperatures above 2500 K, Fe(III) becomes reduced to Fe(II) by release of O$_2$ (Bykova et al., 2016). This phenomenon may be driven even by the blackbody radiation containing a great fraction of photons with wave length shorter than 2 µm at and above this temperature level.

3.2. ISA activates the O$_2$ input to the deep ocean

Ocean ecosystems are based on certain balances between oxidizing and reducing agents. As a result of the ISA-triggered additional input of organic carbon in the ISA emission region (i.e. the ISA precipitation region), as described in chapter 3.1, oxygen consumption by increasing organic debris precipitation could increase. The recent oxygen decline in some oceanic regions may result at least in part from the deposition of soluble iron deriving from flue gas pollution. Equally discussed in chapter 3.1 is the decrease of the oxidation efficiency within the water column by measures to increase the sinking velocity of the organic containing debris, this effect of ISA might compensate completely.

Recently and without ISA influence, oxygen deficiency seems to develop in many parts of the ocean as described in the introduction. Oxygen deficiency is usually due to insufficient vertical water exchange owing to increased vertical density gradient rather than the result of increased phytoplankton production.

Oxygen deficiency (hypoxia) is found frequently between the oxic surface layer (the oxygenated one) and the oxic deep water layer (Bruland, 2006; Capone and Hutchins, 2013). Due to the climate warming the localities with a lack of oxygen seem to intensify and expand already today (Kalvelage et al., 2013).

The deepest water layer of most ocean basins results from the Antarctic wintertime ocean surface ice generation by fractionating sea water into salt-poor sea ice and salt-rich dense brine. This results in the production of cold high density oxic brines which sink to the bottom of the south ocean. The cold high density oxic brines spread as a thin oxic bottom layer up to the ocean basins north of the equator. The most recent severe climate warming which induced disturbance of the THC is likely to have been activated by the increasing inflow of the soft and cold melt water from Greenland into the North Atlantic. This inflow disturbs the down flow of the Gulf Stream water (Rahmstorf et al., 2015). According to the increased melt even of Antarctic glaciars the ocean surface around Antarctica became decreased in its
salt content. This effect increased the ocean surface covered by sea ice (Bintanja et al., 2013). This freezing of the salt-poor melt water layer decreases the production of dense brines. This again decreases the down flow of brine reducing again the vertical components of the ocean currents.

Through the ISA induced cooling, the oxygen and CO₂ flux into the deep ocean basins will be restored because of the input of the cold dense oxygen and CO₂ enriched polar surface water: Reduced melt water production of the Greenlandic and Antarctic ice shields by falling surface layer temperatures will restore and intensify the thermohaline circulation within the northern polar regions by increasing the amount of Gulf Stream dumped and by producing the circum Antarctic sea ice cover without melt water dilution, which induces the production of cold high density brines sinking to the ocean basin bottoms (Ohshima et al., 2013; Rahmstorf, 2006).

3.3. Phytoplankton fertilizer extraction from ocean sediments and underlying crust

The oceanic crust is composed of peridotites, basalts and serpentine rock and has a layer of sediment on top. Sediments and bed rock contain reductive and alkaline components extractable by sea water. The sea water circling through these rocks loses oxygen, sulphate, nitrate and even hydrogen carbonate by reduction and precipitation and becomes enriched with methane and further reductants (Evans, 2008; Janecky and Seyfried, 1986; Kelemen et al., 2011; Müntener, 2010; Oelkers et al., 2008; Sanna et al., 2014; Schrenk et al., 2013; Sissmann et al., 2014). The cause of the ocean water flow through the sediment layer and base rock is the temperature difference driven convection. Sediment compaction by gravity, subduction-induced compaction and subduction-induced hydroxyl mineral dehydration may be further reasons for water movement through the sediment layer at the ocean bottom.

Olivine is one of the main mineral components of oceanic crust rock layers below the sediment layer. Hauck (Hauck et al., 2016) simulated the effects of the annual dissolution of 3 Gt olivine as a geengineering climate cooling measure in the open ocean, with uniform distribution of bicarbonate, silicic acid and iron produced by the olivine dissolution. An additional aim of this work was the development of a neutralization measure against the increasing acidification of sea water. All the components of olivine, SiO₂, Fe(II) and Mg are phytoplankton fertilizers. They calculated that the iron-induced CO₂ removal saturates at an average ~1.1 PgC yr⁻¹ for an iron input rate of 2.3 Tg Fe yr⁻¹ (1% of the iron contained in 3 Pg olivine), while CO₂ sequestered by alkalinisation is estimated to ~1.1 PgC yr⁻¹ and the effect of silicic acid represents a CO₂ removal of ~0.18 PgC yr⁻¹. These data represent the enormous potential of the ocean crust rock as source of phytoplankton fertilizer.
The flow of sea water through anoxic sediments and bed rock results in the reduction of its \(\text{SO}_4^{2-} \) content as well as extraction of the soluble fraction from the sediment like Mn(II), Fe(II), \(\text{NH}_4^+ \) and \(\text{PO}_4^{3-} \). The chemical and physical extraction processes are enhanced by the action of microbial attack at the border lines between oxic sea water and anoxic sediment parts within this huge aqueous system.

At suboxic conditions soluble Fe(II) and Mn(II) have optimum solubility or may be fixed as solid Fe(II)\(_2\)(PO\(_4\))\(_3\), FeCO\(_3\), MnCO\(_3\), FeS\(_2\), S\(_0\) and further Fe-S compounds (Ohman et al., 1991; Roden and Edmonds, 1997; Slomp et al., 2013; Swanson, 1988; Wallmann et al., 2008).

Silicon is mobilized too, from the dissolution of silicates and SiO\(_2\) at methanogenic conditions by complexation with reduced humic acid (HA) (Vorhies and Gaines, 2009; Wallmann et al., 2008). In the reduced conditions HA is characterized by catechol and further polyphenolic functions, which allows HA to complex with silicon (Belton et al., 2010; Demadis et al., 2011; Jorgensen, 1976) and with further metal cations.

Silicate dissolution mobilized Ca\(^{2+}\), Mg\(^{2+}\), Ba\(^{2+}\), Fe\(^{2+}\), Na\(^+\), K\(^+\). Fe\(^{2+}\), Mn\(^{2+}\) and PO\(_4^{3-}\) become more or less precipitated as sulphides, carbonates, within the sediment (Fe(II)S\(_2\), CaCO\(_3\), MgCa(CO\(_3\))\(_2\), Fe(II)CO\(_3\), Mn(II)CO\(_3\), Fe(II)\(_2\)(PO\(_4\))\(_3\)), and within its suboxic surface (BaSO\(_4\)) or at its oxic surface (SiO\(_2\), Fe(III)OOH, Mn(IV)O\(_2\), clay minerals). The authigenic formed ferromanganese nodules (Kastner, 1999) are formed by in situ microbial precipitation from sediment pore water squeezed out to the seafloor on the sediment layer (Nayak et al., 2011; Wu et al., 2013). Main components of the nodules are the phytoplankton fertilizer components SiO\(_2\), Fe- and Mn-oxides (Nayak et al., 2011).

Having left the borderline between anoxic and suboxic near-surface sediment the HA catechols are changed by reversible oxidation into quinone or quinhydrone configurations by decay of the Si catechol complex. Like most of the chemical reactions within the sediment compartment even oxidation of the HA-Si complex is directed by microorganisms. The microorganisms involved use HA as external red-ox ferment (Benz et al., 1998; Bond and Lovley, 2002; Coates et al., 1998; Kappler et al., 2004; Lovley and Blunt-Harris, 1999; Lovley et al., 1999; Piepenbrock et al., 2014; Straub et al., 2005). After arrival of the pore water originating from the anoxic deeper sediment or bed rock at the suboxic surface-near sediment layers the oxidized HA releases Si(OH)\(_4\) and, NO\(_3^-\) produced by microbial NH\(_4^+\) nitrification (Daims et al., 2015; van Kessel et al., 2015). Depending on the produced Si(OH)\(_4\) concentration this can trigger the precipitation of layered silicates like smectites, glauconite, and celadonite as well as silica (Björlykke, 2010; Charpentier et al., 2011; Gaudin et al., 2005; Polgári et al., 2013; Pufahl and Hiatt, 2012; Zijlstra, 1995). Similar to HA, the clay mineral formation within the sediment, and the usage of the red-ox potential of these
authigenic minerals are, at least in part, the result of microbial action (Konhauser and Urrutia, 1999; Kostka et al., 1996).

The deep ocean currents take up the pore water percolates out of the sediment and considerable amounts of the dissolved, colloidal or suspended sediment originating elements are THC-conveyed to the surface (Lam and Bishop, 2008) and activate there the phytoplankton production again. This as well triggers the CO₂-conversion to organic C resulting in cooling the troposphere according to chapter 3.1. Repeatedly it also cools the troposphere by increasing the DMS formation according to chapters 2.5 and 3.1.

4. Natural cooling effects of the iron cycle on the ocean crust

4.1. Carbon storage as authigenic carbonate in the ocean crust

The mechanism described in this chapter has the highest influence on the climate, because its carbon storage capacity is much greater than that of their sediment layer. The convective water flow through the huge alkaline ocean crust volume is estimated to about 20 - 540 x 10³ km³/yr (Nielsen et al., 2006). The oceanic crust comprises the largest aquifer system of the Earth with an estimated rock volume of 2.3 x 10⁹ km³ and a fluid volume of 2 % of the total ocean or ~10⁷ km³ (Orcutt et al., 2011). The system of the mid-ocean rifts (MOR) and subduction zones and the sector between these volcanic active regions are part of the Earth Mantle convection cycle and part of said interconnected aquifer system. The bottom water of the ocean basins are in close contact to this conveyor belt-like moving rock layer of the oceanic crust. New oceanic crust is produced at the MOR, during its cooling it is pulled apart from the MOR by the moving underlying mantel and at last the moving mantle draws the crust down into the deeper mantle below the subduction zones. The oceanic crust has a sediment layer on top of its assemblage of multi-fractured crystalline and volcanic rocks. Both, sediment and igneous bed rock interior are in an anoxic reduced and alkaline state; temperature on top of the sediment surface at the ocean bottom is round about 0 °C but temperature increases up to >1000 °C within the igneous bedrock basement. Because there is no effective sealing between cold bottom water and high temperature zone, the water content of sediments and fractured basement flows through the crust in multiple thermal convection cycles positioned between cold surface and hot deep. Figure 5 illustrates the oceans friction factor inducing climate warming due to the ocean basins vertical mixing circles.
Figure 5. The motor of the Antarctic bottom water (AABW) current is the sea ice production of the Southern Ocean area bordering Antarctica. The North Atlantic Deep Water (NADW) current is driven by decreasing Gulf Stream temperature on its way north. Climate warming especially the faster temperature rise at higher latitudes shifts the region of the Gulf Stream down flow as NADW further to the north as a result of the lowering Δt between equatorial and polar surface water. This shift sets additional Greenlandic coast regions in contact with warm Gulf Stream water and even the rising air temperatures as further component poor increasing amounts of fresh melt water on the ocean surface. The rising melt water volume and the further north flowing Gulf Stream increases the contact region between Gulf Stream water with fresh melt water. This produces increasing amounts of original Gulf Stream water but too low in density to sink and to become part of NADW. Temperature rise at higher latitudes reduce the salt content of ocean surface water around Greenland and Antarctica inducing reduced NADW and AABW volumes. According to the reduced down flow current volumes, the amounts of CO$_2$ and O$_2$ to the deep ocean basin are reduced as well as the vertical fertilizer transport from the ocean basin bottom, to the phytoplankton at the surface.

Alkalinity and alkalinity-inducing compounds of the ocean crust rock layers extract CO$_2$ and HCO$_3^-$ from sea water by carbonate precipitation in the fissures during sea water percolation through the multi-fractured rock (Coggon et al., 2012). A carbon uptake of 22 to 29 Mt C/year
is estimated during the hydrothermal alteration of the oceanic crust (Kelemen and Manning, 2015). This is more than the carbon uptake by the overlying sediment layer of the oceanic crust which is estimated to 13 to 23 Mt C/year (Kelemen and Manning, 2015). The oceanic crust is composed of peridotites, basalts and serpentine rock with a sediment layer on top. Said rock layers contain reductive and alkaline components. Sea water circling through these rock layers loses its contents of oxygen, sulphate, nitrate and even parts of hydrogen carbonate by reduction and precipitation and becomes enriched with methane and further reductants. (Evans, 2008; Janecky and Seyfried, 1986; Kelemen et al., 2011; Müntener, 2010; Oelkers et al., 2008; Sanna et al., 2014; Schrenk et al., 2013; Sissmann et al., 2014).

Because of the opposing chemical milieu differences between the oxic ocean water inflow and anoxic reduced and alkaline sediment and basement the ocean water convection cycles through the ocean crust act as a continuous chemical reaction systems and forms habitats of intensive acting microbial action (Ivarsson et al., 2016). The most intensive chemical reaction intensity is found at MOR, subduction zones and at volcanic sea mounts, between MOR and subduction within the abyssal plain convection cycling occurs (Orcutt et al., 2011). Because the hydrogen carbonate load of the ocean water inflow comes to precipitation as carbonates of Ca, Mg, Fe, and Mn within the alkaline rock interior and by chemical reduction of sulphate, nitrate and hydrogen carbonate, the ocean basements acts as huge CO₂-Carbon storages. No doubt, the ocean crust carbonate depot is the most effective carbon storage, more effective than any other organic carbon storages.

Within the huge ocean crust contact volume, sea water changes the alkaline pyroxenes and basalts into serpentine, diabase and carbonates; by producing heat, rock volume expansion and by permanent production of numerous fissures. The ocean water sulphates react with the silicate components to magnetite, pyrite and barite. The sea waters hydrogen carbonate load precipitates within the rock fissures as magnesite, calcite, siderite and dolomite. By heat transfer from hot rock and chemical reaction, heat circling through the primary and new generated multiple fissures in the former mantle rock the sea water inflow heats up, producing convective flow. At fissures where the alkalized flow of hot CH₄ and H₂ containing convection water comes out with pH 9 to 11 and contacts the fresh sea water, carbonate precipitates and builds up skyscraper high carbonate chimneys (Kelley et al., 2005).

The convective seawater flowing only through the MOR system is estimated to about 20 to 540 x 10³ km³/yr (Nielsen et al., 2006). This volume is even more than the global river flow of about 50 km³/yr (Rast et al., 2001).

The weathering reaction conditions and the sea water alkalization during the intense sea water contact with the alkaline MOR rocks are much more aggressive so respectively more effective comparing to reaction conditions and alkalization during the precipitation water contact during weathering reactions of continental rocks. This is confirmed by the alkaline pH
of up to 11 of the “White Smoker” MOR outflow in spite of its haline salt buffered seawater origin (Kelley et al., 2005). Even the most alkali run-off from limestone karst spring fresh-waters or within karst cave fresh-waters does not exceed pH levels of 8.5 (Li et al., 2010; Raeisi and Karami, 1997; Righi-Cavallaro et al., 2010).

There is no doubt that the efficiency of the pH dependent CO$_2$ absorption and carbonic acid neutralizing at the ocean surfaces and the hydrogen carbonate precipitation to carbonate processes at and within the oceanic crust are dependent on the activity of the THC within the ocean basins. During cold climate epochs with undisturbed THC the CO$_2$ conversion to ocean crust carbonate is activated as well as the CO$_2$ conversion to the organic fraction of ocean sediments. The continuous availability of chemical activity, as chemical reaction vessel and as an alkalinity reservoir of the oceanic crust is maintained by the continuous generation of new crustal rock material of 21 km3/year (Orcutt et al., 2011). This huge rock volume production capacity has enough alkalinity and fertilizer reserves to maintain the absorption, neutralization and precipitation of a multiple of the recent incoming CO$_2$ and HCO$_3^-$.

THC is the main transport medium of carbon from the atmosphere into the deep on Earth. This makes THC to the most prominent climate stabilization element. The realization of the significance of THC as stabilization element of our recent climate induces questions about the stability of the THC. As stated in chapter 1 the main factors for destabilizing the THC seems to be the desalting of surface ocean layers by freshwater injection from increasing ice melt (Hansen et al., 2015). A melt increase might drive the destabilization of THC. And at first the top layers of the ocean basins will suffer from acidification and the deep layers will become alkaline and anoxic.

By starting the ISA process, the induced climate cooling will decrease the Greenland glacier melt. The minimized freshwater inflow to the North Atlantic Ocean reduces the dilution of the salty Gulf Stream and increases the down flow quantity of oxic and CO$_2$ containing salty surface water. In parallel the surface increase of sea-ice produced on the South Ocean surrounding the Antarctic continent is followed by increased down-flow of oxic and CO$_2$ containing cold brine onto the bottoms of the oceanic basins. Both effects do increase the THC activation: the flow of alkaline, phytoplankton fertilizer enriched, and oxygen depleted deep-ocean water to the surface. This activates CO$_2$ absorption from the atmosphere by phytoplankton growth and by CO$_2$ absorption.

One of the proposed alternative climate engineering measures aims to absorb atmospheric CO$_2$ by reducing the surface ocean acidity and by producing phytoplankton fertilizers. To transfer 1.1×10^9 t/year CO$_2$ carbon into the ocean a crushing of 3×10^9 t/year of the ocean crust and mantel rock mineral olivine to a particle diameter of 1 µm and suspend it at the ocean surface would be necessary (Hauck et al., 2016; Köhler et al., 2013; Köhler et al., 2016).
2010). These numbers seem to be two orders of magnitude too high. Keleman & Manning calculate a carbon mass subduction of about 50×10^6 t C/year (C in oceanic crust, bedrock and sediment layer) (Kelemen and Manning, 2015). Independently of which of both calculations has a mistake – technical activities to do the Hauck et al. proposal are far from any economic reality.

The proposed reaction of CO$_2$ with olivine is done with much better effectiveness by nature without any costs within the ocean crust in sufficient quantity. To minimize CO$_2$ emission it has been proposed to minimize power stations flue gas CO$_2$ by absorption by lime suspension (Haas et al., 2014). This measure seems to be unnecessary when the ISA method comes into practice.

The fertilizing elements the phytoplankton needs, like Si, P, and Fe, are all present in the ocean crust (Lyubetskaya and Korenaga, 2007) and property of the ocean crust water extract. Intensification of the THC would also increase the fertilizer concentration at the ocean surface in the phytoplankton layer. As demonstrated the undisturbed THC is essential to keep the climate stabilized (Coogan and Gillis, 2013).

The ocean crust from the warm Mesozoic epoch which had no frozen polar regions contained about five times more authigenic carbonate than ocean crust younger than 60 million years (Coogan and Gillis, 2013). Coogan interpreted this as possible consequences of higher bottom water temperature and/or different seawater composition. Insua et al. (Insua et al., 2014) found evidence, that the salinity of the ocean bottom water during the Last Glacial Maximum had been up to 4% greater than today. It seems evident that the cause of the latter had been the higher volume of brine produced during sea-ice freezing. This fact demonstrates that even disturbed or weakened THCs might be the cause of reduced carbonate C uptake of the ocean crust. The quantity of carbonate precipitation depends on the CO$_2$ and/or HCO$_3^-$ input with seawater. As a consequence, the quantity of the ocean crust CO$_3^-$ uptake varies according to the activities of the THCs: strong THCs increase the crust carbon content; weak THCs decrease it.

During the time lag between the onsets of the ISA method cooling and the appearance of the alkalinity and fertilizer increase at the ocean surface the cooling effect of ISA remains reduced. But after this time lag the ISA method increases to optimal efficiency. Even from an economic viewpoint it seems better to compensate this by increasing the ISA emission at the beginning during the time lag, than doing the proposed suspending of olivine dust at the ocean’s surface. Even lime shell wearing phytoplankton is able to accept small pH changes of CO$_2$ induced dependent acidification because it uses the build-up of calcium carbonate shells as a detoxification measure to get rid of calcium ions from their bodies (Müller et al., 2015). As a consequence of this effect only the relation between Ca carbonate sequestration and organic carbon sequestration may decrease during the time lag.
4.2. Carbon storage as organic and inorganic marine debris and as authigenic carbonate in the ocean sediment

The uptake of authigenic hydrogen carbonate from the ocean and precipitating it in the sediment seems to play as well a major role in the carbon circle (Schrag et al., 2013). According to Kelemen (Kelemen and Manning, 2015) the carbon uptake by the sediment layer of the oceanic crust can be estimated to 13 to 23 Mt C/year. The carbon inventory consists of life and dead organic carbon, carbonate carbon and authigenic carbonate produced by excess alkalinity deriving mainly from sulphate reduction and silicate solution by reduced humic acids. According to Sun & Turchyn the formation of calcium carbonate and its burial in marine sediments accounts for about 80 % of the total carbon removed from the Earth surface (Sun and Turchyn, 2014). Meanwhile it seems possible to distinguish between marine formed sediment carbonate and authigenic carbonate (Zhao et al., 2016). Accordingly, excess alkalinity is produced by dissolution of silicates like illite, kaolinite and feldspars, volcanic ash, pyroxene or other silicate components of ocean sediments and even opal by Si complexation with reduced HA at methanogenic conditions (Meister et al., 2011; Roden and Edmonds, 1997; Solomon et al., 2014; Wallmann et al., 2008). Compensation by hydrogen carbonate induces authigenic precipitation of microbial dolomite (Roberts et al., 2004), Ca or Fe carbonate (Solomon et al., 2014; Vorhies and Gaines, 2009) (Dewangan et al., 2013; Merinero et al., 2008; Sun and Turchyn, 2014; Wallmann et al., 2008) and further minerals (Tribovillard et al., 2013).

As mentioned in chapter 4.1, the biological processes of chemical sediment reduction induced by the ISA fertilization changes NO$_3^-$, SO$_4^{2-}$, Fe(III), Mn(III/IV) and HCO$_3^-$ to their deoxygenated and reduced species inclusive CH$_4$ and NH$_4^+$ generation, produces a pH increase and additional alkalinity. The alkalinity excess converts dissolved HCO$_3^-$ into solid lime and dolomite (Berner et al., 1970; Krause et al., 2012; Luff and Wallmann, 2003; Raiswell and Fisher, 2004). The solid carbonates and CH$_4$ hydrate stabilize the sediment. Outside the polar permafrost region methane hydrates are stable below 300 m below sea level and at ocean temperatures of nearly 0 °C (Maekawa et al., 1995). The carbonate precipitation sequesters additional parts of CO$_2$, prevents the ocean water from acidifying and at last improves the CO$_2$ absorption by ocean water from the atmosphere. This again cools the troposphere.

The enhanced dissolution of silicates from the ISA induced by methanogenic sedimentation additionally compensates the enhanced alkalinity loss at the ocean surface attributed to the calcification due to foraminifera and coccolithofores phytoplankton growth by ISA fertilization.

4.3. Minimizing CH$_4$ emissions from sediments and igneous bedrock
The reaction product of oceanic crust minerals containing Fe(II) like Olivine and Pyrrotite with sea-water is hydrogen. Hydrogen is fermented by microbes with hydrogen carbonate into methane. The latter is known as constituent of the springs emitted by the ocean crust rocks (Früh-Green 2004).

Such and further methane emissions like anoxic sediments outside the methane hydrate stable pressure and temperature region induce de-oxygenation within the overlying water layer by methane emission (Römer et al., 2014; Yamamoto et al., 2014). CH₄ emissions are induced for instance by hydrothermal springs (Suess et al., 1999), sediment movement (Krastel et al., 2014; Paull et al., 2007), climate change induced seawater warming (Serov et al., 2015; Shakhova et al., 2005), changing ocean circulation (Berndt et al., 2014), ocean sediment subduction (Elvert et al., 2000; Fischer et al., 2013). At lower vertical sediment to ocean surface distances the CH₄ emissions reach the troposphere. Because the Arctic Ocean suffers at most from the climate change induced warming the CH₄ release within this region rise extraordinary (Phrampus et al., 2014). The most elevated Global surface-near oceanic methane concentrations are located within the Arctic Ocean and the arctic troposphere (Shakhova et al., 2008). This might be one of the reasons for the higher temperature rise of the Arctic region than the average surface Earth warming.

Within the sediment and within the suboxic ocean water column, methane is oxidized by sulphate. Iron is an accelerator of this microbial fermentation reaction (Sivan et al., 2014). The ocean water column and the underlying sediment having had contact with ISA-originating iron are elevated in their iron content. This has different cooling effects to the troposphere: at first the elevated iron content in the uppermost suboxic sediment reduces the methane content emitted by the sediment by anaerobic oxidation of methane by sulphate-reducing bacteria.

Next the iron content reduces the methane bubble-development within the sediment layer preventing catastrophic methane eruptions by sediment destabilization, methane bursts and sediment avalanches.

Third: elevated iron content prevents the ocean water column from CH₄-induced oxygen deficiency by the formation of ammonium. This oxygen deficiency prevention protects from generation of the extreme stable and very effective GHG N₂O (Naqvi et al., 2010).

The glacial age proved that in spite of the multiplicity of the cooling processes induced, they caused little disturbance to the ecosystems. This predestines ISA as a steering tool to prevent climate fluctuations like the recent climate warming mankind is suffering from. The present study aims to describe in chapter 5 the technical means to realize this climate engineering project by the ISA method.

Figures 6a and 6b illustrate respectively the differences between a poorly and a sufficiently mixed ocean.
Figures 6a and 6b. The poorly mixed ocean has an acid surface balanced in CO₂, hydrogen carbonate and O₂ content with the atmosphere because these ingredients cannot be removed sufficiently from the surface to the basin bottom where hydrogen carbonate is precipitated in sediments and bedrock by the thermal convective sediment and crust extraction processes. The low O₂ transport rate to the deeper ocean ensures suboxic to
anoxic milieu below the surface layer. The acid-tolerant phytoplankton species have a lower production rate of organic carbon and a smaller production of carbon in the form of CaCO₃, because the fertilizer extracted from anaerobic sediments and bedrock does not arrive at the ocean surface. The organic carbon debris fraction precipitating as sediment layer in a poorly mixed ocean bottom is elevated compared to a sufficiently mixed ocean, because is the small oxidation rate during its trickling through the suboxic to anoxic water column. But this is by far no compensation of the low rate of hydrogen carbonate transfer from surface to bottom and its storage as dolomite and lime precipitate. As a result, the poorly mixed ocean has a decreased carbon transformation rate from atmosphere to ocean crust and sediment comparing to the sufficiently mixed ocean and will further accelerate the climate temperature rise.

This result is contradictory to the calculations of Duprat et al. (Duprat et al., 2016). They found within the iron containing melt water trail of the giant Antarctica that icebergs increased phytoplankton concentration. Duprat et al. assume that the iceberg induced carbon export increase by a factor of 5 to 10 within its influence locality and they expect an increase in carbon export by the expected increase of the iceberg production that has been prognosted (for instance Joughin et al. (Joughin et al., 2014)). We interpret the ongoing increase of icebergs and ice melt as a further severe warning sign that the ongoing destabilization might end soon in an insufficient mixed ocean.

The only artificially realizable restoration tool to change an insufficiently or poorly mixed ocean into a well mixed ocean is definitely by climate cooling. The ISA method appears to be the climate cooling method by means of choice, because it accelerates the conversion of atmospheric carbons into solid and even liquid carbons with the means of nature. Comparing to the artificial aerosol systems based on TiO₂ or H₂SO₄ (Pope et al., 2012), the sea-salt aerosol has advantages like better controllability and economy.

4.4. Modest iron effects onshore

The fertilizing role of African dust in the Amazon rainforest is well known (Yu et al., 2015b). On a basis of the 7-year average of trans-Atlantic dust transportation, Yu (Yu et al., 2015a) calculated that 182 Tg yr⁻¹ dust leaves the coast of North Africa (15°W), of which 43 Tg yr⁻¹ reaches America (75°W). The dust reaching the Caribbean and the Amazon come mainly of the northwestern Africa (Algeria, Mali, and Mauritania) (Gläser et al., 2015).

An average of dust deposition into the Amazon Basin over 7 years is estimated to be 29 (8–50) kg ha⁻¹ yr⁻¹ (Yu et al., 2015b), providing about to 23 (7–39) g ha⁻¹ a⁻¹ of phosphorus to fertilize the Amazon rainforest, together with Mg and Fe. Although not directly related to ISA, this dust deposition allows biomass fertilization and thus CO₂ removal from the atmosphere.
The wide spread tropical soils, mostly laterites, are deficient in phosphate and nitrogen but not in autochthon iron. The only exception to this is for all the epiphyte plants and the plants growing on the soil-free localities without any autochthon iron. These plants might gain profit from the ISA method. Such plant communities are localized for instance on top of the famous Tepuis (table mountains north of the Amazon basin near the borderlines of Brazil, Venezuela and Guyana) and on the tree branches in the rain forests without roots into the ground. From Köhler et al. (Köhler et al., 2007) the epiphytes flora on the tree branches of the rain forests may contain up to 16 t ha\(^{-1}\) (Costa Rica) up to 44 t ha\(^{-1}\) (Colombia) of epiphyte plant + humus dry weight on the tree branches.

The epiphytes but much more the Tepui plants would gain profit from ISA and even undissolved iron oxides, because plant roots and fungal hyphae secrete iron-solubilizing organic acids and complexants. Even microbial ferments have time enough to turn all kind of undissolvable Fe into dissolvable Fe. Some rain forests like the Amazonian, benefit from sporadic dust plume fertilization of Saharan origin. Others may profit from an artificial ISA precipitation resulting in a significant additional epiphyte plant growth.

5. Estimations of the ISA demand by the ISA method

5.1. ISA can induce a significant CH\(_4\) depletion

Wittmer (Wittmer et al., 2015a) reported that the ISA method is very efficient for \(^{37}\)Cl generation. Hence, ISA allows depletion of greenhouse gas methane by separation prior cooling effect. Therefore, ISA appears to be a very promising cooling method with technical and economic stakes. But the answer depends strongly on the volume of ISA to be produced and emitted. Indeed, ISA plume should be released high enough in the troposphere to get sufficient distribution and residence time in combination with \(^{37}\)Cl generation quantity.

Based on results of Fe photolysis induced \(^{37}\)Cl production, Wittmer (Wittmer et al., 2015a) estimated the feasibility of CH\(_4\) depletion by NaCl-diluted ISA. Wittmer found a \(^{37}\)Cl emission of 1.9 x 10\(^5\) \(^{37}\)Cl/cm\(^3\) at a Cl/Fe(III) molar ratio of 101 within the pH range of 2.1-2.3. The same \(^{37}\)Cl generation was found at the suboptimal pH of 3.3 – 3.5 and at a Cl/Fe(III) molar ratio of 51. This Cl generation is four times higher than the reference which corresponds to a significant CH\(_4\) lifetime reduction in the troposphere (Wittmer et al., 2015a). A pH range of around 2 corresponds to the natural aerosol pH within the oceanic boundary layer. The optimum efficiency of \(^{37}\)Cl production by photolysis of ISA corresponds to pH 2, whatever the source of Cl\(^{-}\), NaCl or gaseous HCl and whatever if ISA is an iron(III) oxide or an iron(III) chloride aerosol (Wittmer et al., 2015a).

5.2. ISA demand calculation
Current CH₄ depletion by °Cl is estimated from 3.3% (Platt et al., 2004) to 4.3% (Allan et al., 2007). According to the results of Wittmer (Wittmer et al., 2015a) at a Cl⁻/Fe(III) molar ratio of 101, this amount would rise fourfold: from 13 to 17%.

1. Instead of using a Cl⁻/Fe(III) molar ratio of 101, Wittmer used a Cl⁻/Fe(III) ratio of 51 to perform calculations at the suboptimal pH of 3.3-3.5: 1.9 x 10⁵ °Cl/cm³ (Wittmer et al., 2015a);

Moreover, Wittmer made two wrong estimations:

2. There is no other tropospheric Cl⁻ source than sea-salt;

3. The global production rate of sea-salt aerosol Cl⁻ of 1785 Tg/year has to be doped with iron at a Cl⁻/Fe(III) molar ratio of 51.

The calculations made with these wrong assumptions resulted in an iron demand of 56 Tg/year Fe(III) to obtain the desired CH₄ depletion effect (Wittmer et al., 2015a).

Whereas the calculations with the correct Cl⁻/Fe(III) ratio of 101 results in a Fe(III) demand of only 18 Tg/year — still by the wrong assumption that there is no further Cl⁻ source than sea-salt.

ISA is produced from pyrogenic iron oxides. Pyrogenic oxides have particle sizes lower than 0.1µm. Diameters of the NaCl-diluted ISA particles of the Wittmer tests (Wittmer et al., 2015a) are round about 0.5µm. This confirms the test results of Wittmer et al. as calculation basis without any cut.

On the contrary, Wittmer made other two wrong assumptions:

4. ISA has the same particle size and corresponding surface range as sea-salt;

5. ISA has the same residence time as sea-salt aerosol in the troposphere

According to their coarse aerosol particle range, the residence time of sea-salt particles in the troposphere is inferior to 1 day (Jaenicke, 1980) while the artificial ISA particles with diameters lower than 0.5 µm have residence times in the troposphere of at least 10 days up to several weeks (Kumar et al., 2010; Penner et al., 2001). Analogue to CCN behavior in cloud processing (Rosenfeld et al., 2008) most of the small-sized ISA particles are protected by their small sizes from coagulation or coalescence with sea-salt aerosol particles. This effect prevents ISA from leaving the optimum active atomic chlorine emission conditions: low pH and low particle diameter range.

The residence time difference of more than one order of magnitude in comparison to sea-salt aerosol further reduces the Fe demand for ISA production from 18 Tg/year to less than 1.8 Tg/year.

6. The properties of the ISA particles produced by the most preferred ISA method variant are explained in chapter 4. Their difference to the NaCl-diluted ISA tested by Wittmer (Wittmer et al., 2015a) are: ISA particles are made of FeCl₃ x nH₂O undiluted by NaCl, or FeOOH coated by FeCl₃ x nH₂O undiluted by NaCl (Meyer-Oeste, 2010;
The Cl-/Fe(III) molar ratios of FeCl₃ x nH₂O are at 3 or even lower. The Cl-/Fe(III) molar ratio of typical ISA particles is at least 30 times smaller than the molar Cl-/Fe(III) ratio of 101 of the tested ISA by Wittmer (Wittmer et al., 2015a). This reduces the Fe demand for ISA production again at least by 1 order of magnitude from <1.8 Tg/year to about <0.2 Tg/year.

Additionally to the °Cl emission increase with increasing iron concentration in the tested aerosols, the results of Wittmer verify an increase in °Cl emission with decreasing pH (Wittmer et al., 2015a). According to Wittmer and Meyer-Oeste (Meyer-Oeste, 2010; Oeste, 2009), oxidic ISA aerosol particles may be generated free from any pH-buffering alkaline components. This hampers their pH decrease by air-borne HCl to the optimum pH around pH 2. Sea-salt buffering of the absorbed HCl (Sullivan et al., 2007) by the alkali and earthen alkali content of sea-salt aerosol can occur only by coagulation, most probable in a minor ISA particle fraction but not in the bulk. From the beginning of its action in the troposphere ISA keeps in the optimum °Cl emission mode: low pH, and high iron concentration levels.

Preferred ISA is produced by the ISA method variant 1 or variant 3 as described in chapter 4. Hence, ISA are composed of particles made by flame pyrolysis or iron salt vapor condensation. The mentioned ISA particles have diameters of 1/10 of the particle diameters of the Wittmer tests. These ISA particles have optimum chlorine activation efficiency:

- In an appropriate chloride dotation or chloride delivering environment;
- At a pH <2;
- If they are emitted above the tropospheric boundary layer.

Then the Fe demand may fall up even shorter than the calculated 0.2 Tg Fe/year because of their far extended surface area and far extended residence time in the atmosphere.

It has to be noted that this ISA demand calculation result refers only to the ISA cooling property according to CH₄ depletion; further cooling properties according to cloud albedo, depletion of CO₂, black and brown aerosol, ozone increase and further causes are still kept unconsidered.

Further oxidation activity on greenhouse gases and aerosols are induced by the °OH generation activity of ISA: Volcanic eruption plumes contain high concentrations of °Cl plus °OH (Baker et al., 2011) and are characterized by decreased CH₄ concentrations (Rose et al., 2006). Co-absorption of H₂O and HCl is the main reason of the generation of volcanic ash particle coats containing soluble Fe salts originating from insoluble Fe oxides and Fe silicates (Hoshyaripour et al., 2015; Martin et al., 2012). Gaseous HCl from the eruption plume entails Fe chlorides covering the surfaces of volcanic ash particles (Ayris et al., 2014).

Therefore, it is reasonable that photolysis of those chlorides is the origin of both: °Cl and °OH generation in volcanic plumes.
°OH can change from the liquid aerosol phase into gaseous phase (Nie et al., 2014). But by far, not as easy as °Cl can. Indeed, the Henry's law solubility constant of °OH is about one order of magnitude higher than that of °Cl and is in the same range than that of NH₃ (Sander, 2015). But when their hygroscopic water layer shrinks in dry air or by freezing, ISA particles might act as °OH emitters. These additional °OH emissions might further increase the CH₄ oxidation potential of volcanic ash or artificial ISA and thus reduce even more the Fe demand for ISA, though this has not been tested yet it cannot be ruled out.

In order to take care not to overstep the cooling effect too far, a reasonable goal might be to start the ISA method with a global ISA emission of 0.1 Tg Fe/year. This quantity corresponds to the magnitude of the actual Fe input from the atmosphere into the oceans under the form of soluble salt, which is estimated to be from 0.1 up to 0.26 Tg/year (Ito and Shi, 2015; Johnson and Meskhidze, 2013; Myriokefalitakis et al., 2014). Doubling or even tripling of this input quantity by the ISA method is of easy technical and economic feasibility as will been seen in chapter 6.

6. The ISA method: how to increase artificial iron emissions

Preceding calculation evidenced that the ISA method has the potential to cut back the rise of CH₄ and CO₂ and vice versa the small decline of atmospheric oxygen content (Keeling and Shertz, 1992; Manning and Keeling, 2006) because it acts by a bundle of chemical and physical means. The ISA method might retard, stop or even help to restore their contents to pre-industrial levels. By the ISA method, doubling or tripling of the ISA level in the troposphere seems to be possible by feasible technical and economical means.

Since 2004 proposals have been published (Oeste, 2015; Oeste and Ries, 2011) (Meyer-Oeste, 2010; Oeste, 2004, 2009) to modify combustion processes and flue gas emissions in the order to use them as ISA plume emission sources in the troposphere by traffic and power generating combustions and their warm uplifting flue gases. Predestined for the ISA method are any hot flue gas plumes emitted by ship and air traffic, fossil and sunshine power.

At least three variants of ISA production are proposed:

- Variant 1: Emission of flame pyrolytic FeOOH aerosol with particle diameters smaller than 100 nm (Buyukhatipoglu and Clyne, 2010; Kammler et al., 2001) as ISA precursor by co-combustion of organic iron or carbonyl iron additives with liquid or gaseous fuels or heating oils combusted in ship or and jet engines or by oil or gas combustors. Co-combustion of iron compounds is a possible measure in coal power stations and mixing the ISA precursor containing oil combustion flue gas to the coal combustion flue gas after the dry flue gas cleaning stage. Useful side effects of iron additives are fuel efficiency optimization and soot emission minimizing (Kim et al., 2008) ((Kasper et al., 1998; Madhu et al., 2015; Weiser et al.). The emitted FeOOH...
aerosol plumes convert immediately into the ISA plume after leaving the emission sources because of the high reactivity of flame pyrolytic Fe oxides. The period to cover the flame pyrolytic FeOOH particle surface by HCl absorption from the gaseous phase with Fe(III) chlorides is several times shorter comparing to the generation of iron chlorides from natural iron oxide minerals in loess dust particles (Rubasinghege et al., 2010; Sullivan et al., 2007).

- **Variant 2**: Injection of vaporous ISA precursor iron compounds like FeCl$_3$ into a carrier gas. By contacting the carrier gas and/or the atmosphere the vaporous iron compounds condenses and/or converts by physical and/or chemical means directly into ISA. Contrary to all other ISA precursors, the sunlit FeCl$_3$ vapor becomes photoreduced by concomitant generation of °Cl (Rustad and Gregory, 1980). Thus methane depleting °Cl emission can start even before this ISA precursor has changed into hydrated FeCl$_3$.

- **Variant 3**: Injection of ultrasonic nebulized aqueous FeCl$_3$ solution as ISA precursor into a carrier gas. By water evaporation from the aerosol droplets ISA becomes generated.

The preferred heights of ISA plume generation in the troposphere are 1000 m above ground or higher. There the ISA plumes have optimum conditions to spread over sufficient life-times. The necessary buoyancy to lift up the ISA plumes can be regulated by controlling their carrier gas temperatures. Uplift towers (Ming, 2016), vortex generators (Michaud and Renno, 2011) or tethered balloons (Davidson et al., 2012), (Kuo et al., 2012) are preferential means to direct ISA by carrier gas uplift to said heights.

Provision of the phytoplankton to optimize its growth with further nutrients like Mn, Zn, Co, Cu, Mo, B, Si and P by the ISA method is possible by at least the variants 1-3 of the ISA method by co-combustion, co-condensation or co-nebulizing.

Global fixing regulations of GHGs emission certificate prices, values, and ISA emission certificate credit values would be simple but effective measures for the quickest world-wide implementation of the ISA flue gas conditioning method.

7. Interaction of the ISA method with further measures to protect the environment

According to Wittmer & Zetzsch (Wittmer and Zetzsch, 2016) elevated HCl content in the atmosphere triggers the methane depleting coating of oxidic ISA precursors by photolytic active Fe(III) chlorides. Any measure triggering the reduction of the HCl content of the atmosphere would impair the effectiveness of the ISA method based on this kind of method.

In this sense all kind of measures to reduce the sulphur and NO$_x$ content of the flue gas content of gaseous, liquid or gaseous fuels belongs would decrease the effectiveness of oxidic ISA precursors, because the S and NO$_x$ oxidation products sulphuric acid aerosol and
gaseous nitric acid are the main producers of HCl by changing sea salt aerosol into sulphate and nitrate aerosol. Even the measures of reducing the energy production from fuel burning by changing to wind and photovoltaic energy would reduce this HCl source. Sea salt aerosol even produce HCl after contact with organic aerosol and organic volatile matter because the latter generates acid oxidation products from the latter like oxalic acid (Drozd et al., 2014; Laskin et al., 2012; Wang et al., 2014a). A large fraction of organic aerosols and secondary organic aerosols originate from anthropogenic sources like combustions. The change to wind and photovoltaic energy would reduce even this HCl source.

The proposed CE measure of producing sulphuric acid aerosol within the stratosphere by inducing an albedo increase would increase the HCl content, during contact of the precipitating acid aerosol with tropospheric sea salt aerosol. Even the proposed CE measure of increasing the sea salt aerosol content of the troposphere by artificial sea salt aerosol as cloud whitening measure could be used as ISA method trigger if flue gas is used to elevate the sea salt aerosol.

8. Discussion and Conclusion

There is abundant literature on the many geoengineering methods that have been proposed to “cool the Earth” (Lackner, 2015; Zhang et al., 2014). In particular, the injection of sulphate aerosols into the stratosphere is the most studied method, as it mimics the episodic action of natural volcanoes (Pope et al., 2012); (Ming et al., 2014). Injected particles into the stratosphere reduce the radiative balance of Earth by scattering solar radiation back to space, so other nature and type of particles are envisioned with a wide range of side-effects (Jones et al., 2015).

The literature describes also many options to deliver this sulphates, their precursors (or other particles) to the stratosphere (Davidson et al., 2012). For instance, airplane delivery of the sulphate aerosols by the kerosene combustion process requires military jets because regular aircrafts only reach 10 km (30000 feet), and not the 20 km requested (Davidson et al., 2012). In the case of ISA, the altitude needed to “cool the Earth” is much lower, as it is in the troposphere, not in the stratosphere, and the total quantities to deliver are 1 order of magnitude smaller. So air traffic might be a possible means of ISA delivery. But the global jet fuel consumption is about 240,000 t/year. Even by assuming the very high emission rate of 1 kg ISA precursor iron per ton of jet fuel, only 240 tons per year might be emitted. This seems far away from the order of magnitude of the target ISA emissions.

From the many other possible delivery strategies envisioned for SRM by stratospheric aerosols, many are not suited for ISA, like artillery, missiles and rockets (Davidson et al., 2012), because it will be cheaper and less polluting to make profit from the flue gas of a
reduced number of thermal power plants, that might be efficient enough to deliver the artificial iron aerosol needed over the boundary layer, in order to the aerosols to stay several days or weeks on the troposphere and be well distributed (Williams et al., 2002).

According to Luo (Luo et al., 2008), deposition of soluble iron from combustion already contributes from 20 to 100% of the soluble iron deposition over many ocean regions.

As an example we calculated the possible production and emission of ISA respective the ISA precursor FeOOH aerosol using the flue gas of the German power station Niederaußem: with the input of 25 million t/year lignite (brown coal) this power station produces 3,600 MW.

According to ISA production variant 1 (chapter 6) the ISA precursor FeOOH aerosol may be produced by burning of a ferrocene (Fe(C5H5)2) oil solution containing 1 % ferrocene in a separate simple oil burner. The hot oil burner flue gas containing the ISA precursor FeOOH aerosol is injected and mixed into the cleaned power station flue gas. The power station flue gas emission rate is calculated to 9,000 m³ flue gas per ton lignite. Because the ISA precursor containing flue gas will be elevated to heights of more than 1000 m above ground, dust levels of the ISA precursor FeOOH aerosol of 20 mg/m³ flue gas seem to be acceptable.

This allows a quantity of 180 g FeOOH/t of combusted lignite (9000 m³/t x 0,02 g/m³). At a lignite quantity of 25 million t/year, this corresponds to 4,500 t FeOOH/yr. FeOOH has an iron content of 63 %. This corresponds to a possible iron emission of 2,831 t/year or to a ferrocene consumption of 9,438 t/year.

Corresponding to this calculation about 100 of such huge power stations should have the ability to produce the sufficient ISA quantity of an equivalent of 200,000 to 300,000 t Fe/year.

By a co-emission of HCl, for instance by co-burning of an organic HCl precursor, further optimization of the cooling capacity of the produced ISA is possible.

This example illustrates that ISA emission at only 100 power stations, or any similar ISA emission measures, is quite feasible compared to the alternative of CO₂ capture from the flue gas of 40 Gtons/yr, compression of the CO₂ until condensation to the liquid state and then storing the liquid CO₂ by injection into underground rock storage.

In order to increase the effectiveness of the buoyancy capacity of the power works the usual wet cooling tower might be replaced by a dry cooling tower to mix the dry and warm air emission from the cooling tower with the hot flue gas as additional buoyancy and due point reduction mean. Further the flue gas buoyancy may increase by increasing the flue gas temperature.

This or other simple techniques to realize ISA plumes may be used within the troposphere.

One delivery method seems promising and can easily be adapted to ISA method, is the use of tethered balloons (Davidson, 2012), and will cost much less as 1 or 2 km high will be sufficient for ISA emissions, requiring much lower pressures in the pipes, than for SO₂ delivery at 20 km high for the geoengineering method. Technical and economic feasibility
have already been studied for the SPICE project (Kuo et al., 2012) which was planning to release sea water spay at 1 km high. Also, as iron emissions only stay in the troposphere within weeks, compared to SRM sulphates in the stratosphere that are supposed to stay 1 or 2 years, in case any unintentional side effect or problem occurs, stopping the emissions is rapidly possible and the reversibility of its effects are much shorter than for solar radiation management by sulphates aerosols.

Other geoengineering strategies to cool the Earth, like carbon dioxide removal by iron fertilization (Williamson et al., 2012) have several pros and cons, like localized release, less dispersion, in a form that is not readily bio-available, resulting in restricted cooling effects, high expenses. The ISA method allows the use of the same atom of iron several times by catalytic and photocatalytic processes into the atmosphere, with different cooling effects (like albedo modification and enhancement of the methane destruction) and then reaches the oceans, with again further cooling effects like enhancement of the CO₂ carbon fixation. Figure 7 summarizes many of the cooling effects of the ISA method.

Figure 7. Summary of the principal cooling effects of the iron salt aerosols method proposed.
Why ISA appears to be better than ocean iron fertilization? For ocean iron fertilization several tons of Fe(II) are dispersed in a short time (hours) over only some km² of ocean with several drawbacks and a massive algae bloom can change the local biotopes. Meanwhile ISA releases iron continuously, over up to the entire 510 million km² of the Earth surface. The current iron inputs (in the form of soluble salts) into the oceans are estimated between 0.1 and 0.26 Tg/year per year (Ito and Shi, 2015; Johnson and Meskhidze, 2013; Myriokefalitakis et al., 2014). As the water surfaces cover nearly 72% of Earth surface (362 million km²), if ISA delivers 1 Tg Fe/year evenly distributed (in addition to natural and anthropogenic current emissions), which is 4 times more than the expected needs (chapter 5.2), on average every km² of ocean receives 5.4 g Fe km⁻² day⁻¹ (1/510 tons of iron per km² per year).

As a conclusion: the ISA method is feasible even probably without environmental problems, because it relates to chemical and/or physical combustion processes occurring currently. The adjustable flue gas temperatures of different types of combustions are a means to lift the ISA plumes to optimal heights within the troposphere. Climate cooling by ISA involves the troposphere, dry solid surfaces, ocean, ocean sediment and ocean crust. Several GHG factors are controlled by ISA: CO₂, CH₄, tropospheric O₃, black carbon, dust, cloud albedo, and vertical ocean mixing.

Abbreviations:
Carbon capture and storage: CCS; Chlorine atom: °Cl; Cloud condensation nuclei: CCN; Intergovernmental Panel on Climate Change: IPPC; Iron salt: IS; Iron salt aerosols: ISA; Humic-like substances: HULIS; Hydroxyl radical: °OH; Ligand: L; Methane: CH₄; Mid-ocean rift: MOR; Secondary organic aerosol: SOA; Thermohaline circulation: THC; Volatile organic compounds: VOC.

Author contribution:
F. D. Oeste suggested the review idea and performed initial bibliographical search completed by R. de Richter. F. D. Oeste prepared the manuscript and the figures with contributions from all co-authors. T. Ming and S. Caillol also contributed to structuring the manuscript and English corrections.

Competing interests
The authors declare that they have no conflict of interest.

Acknowledgment:
This research was supported by the Scientific Research Foundation of Wuhan University of Technology (No. 40120237) and the ESI Discipline Promotion Foundation of WUT (No.35400664).

The co-authors would like to thanks Louise Phillips for grammatical corrections and re-reading.

Bibliography:

Geochemistry, Geophysics, Geosystems 14, 1771-1786.

Evans, B.W., 2008. Control of the products of serpentinization by the Fe2+ Mg− 1 exchange potential of olivine and orthopyroxene. Journal of Petrology 49, 1873-1887.

as the technology for Carbon Capture and Usage. Cement International 3, 34-45.

Lam, P.J., Bishop, J.K., 2008. The continental margin is a key source of iron to the HNLC North Pacific Ocean. Geophysical Research Letters 35.

Michaud, L., Renno, N., 2011. the sky's the limit. Mechanical Engineering 133, 42.

Postdam Institute for Climate Impact Research 5.

Weiser, V., Eisenreich, N., Roth, E., Pfeil, A., Mechanisms of Soot Reduction in Diesel Pool Fire by Ferrocene.

