Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance

K. Engström¹, M. Lindeskog¹, S. Olin¹, J. Hassler², and B. Smith¹

¹ Department of Physical Geography and Ecosystem Science, Lund University, Lund, 22362, Sweden.
²Institute for International Economic Studies, Stockholm University, Sweden.

Correspondence to: Kerstin Engström (kerstin.engstrom@nateko.lu.se)

Abstract. Reducing greenhouse gas emissions to limit climate change-induced damage to the global economy and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO₂ concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement.

Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate-economy model, a socio-economic land-use model and an ecosystem model). We develop reference and mitigation scenarios based on the narratives and key-elements of the Shared Socio-economic Pathways (SSPs) framework. Taking emissions from the land-use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 “Taking the green road”). For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.

1 Introduction

Combating climate change is one of the greatest challenges of the 21st century. Currently the world is on an emission pathway that approaches the highest of the four Representative Concentration Pathways (RCPs; Fuss et al., 2014; Peters et al., 2012). If emissions are not drastically curbed within the next few decades a global average surface warming of 3.7⁰ C to 4.8⁰ C compared to pre-industrial levels and more frequent extreme weather events will be the likely consequence (IPCC, 2014). Such profound changes in the climate system are strongly linked with changes in the terrestrial biosphere.

During the last 250 years a share of carbon dioxide (CO₂) emissions has been taken up by the terrestrial biosphere, thus
referred to as a carbon sink (Canadell and Schulze, 2014). The future of the terrestrial carbon sink is highly uncertain (Ahlström et al., 2012; Ciais et al., 2013) and depends on processes and feedbacks involving the carbon cycle, nutrient dynamics, disturbances such as wildfires, and land use, the latter driven by the demand for land to grow biomass for food, feed and fuel. Land-use and land cover change (LULCC) are themselves drivers of climate change. During 1750-2012 deforestation and agricultural management are estimated to have contributed 30% to anthropogenic CO2 emissions, while this share decreased to 10% in the period 2000-2012, mainly due to decreasing deforestation rates (Canadell and Schulze, 2014; Ciais et al., 2013). Including other greenhouse gases (GHG, e.g. methane and nitrous oxide), LULCC and agriculture were responsible for 21% of total emissions in 2010 (Tubiello et al., 2015), the remainder stemming from the combustion of fossil fuels and industrial processes.

Mitigation strategies are designed to slow down or limit climate change with the purpose of decreasing negative impacts on society. One manifestation of mitigation measures would be higher gross world product (GWP), which would allow higher consumption and higher investments in e.g. agricultural production, and the terrestrial biosphere. The transition towards carbon neutral energy sources and reduction in overall energy use are key elements of proposed mitigation strategies. For example, in scenarios consistent with the aspiration to keep global average temperature warming below 2°C relative to pre-industrial levels, CO2 emissions from the energy sector are projected to be drastically decreased within the next five decades and to decline to below zero after 2070 (IPCC, 2014b). To achieve these reductions of CO2 emissions from the energy sector, one proposed mitigation measure is to introduce a global carbon tax which creates incentives to reduce overall energy use and to replace fossil fuels with renewable energies, including bioenergy. Bioenergy can be derived from energy crops or residues from other land uses such as forestry (Haberl et al., 2010). An inevitable effect of increased bioenergy use will be an increasing demand for land (Wise et al., 2009; Hassler and Sinn, under review 2016b), the displacement of lands formerly used for traditional agriculture, or the extension of land use into areas occupied by natural ecosystems. Moreover, not all bioenergy systems lead to net emissions reductions, especially if the carbon debt (carbon released when land was cleared initially for bioenergy production) is included (Fargione et al., 2008).

The demand for food and feed is dependent on societal and technological development, e.g. population growth, changes in diets and yield management. Socio-economic scenarios describe the joint evolution of different aspects of development. Here we apply a novel Integrated Assessment Modelling (IAM) framework based on existing, established component models of ecosystem carbon cycling and crop yields, land use and energy sector responses to climate and economic development to explore the impacts of a global carbon tax on fossil fuels on global land use and land-atmosphere carbon exchange, within. Our approach is offered as an alternative – parsimonious – method, compared with the wider context of different socio-economic scenarios of the IAM-generated public SSP (Shared Socio-economic Pathways – SSPs; O’Neill et al., 2017) projections (Riahi et al., 2017; SSP database, 2015), for interpreting the SSP scenarios and relating them to climate, emissions, ecosystem impact, land use and energy sector development (in press) framework. We quantify the indirect and direct effects of the carbon tax on land use and climate, in a coherent way. The scenarios are not predictions, but aim at providing an independent set of consistent SSP
realisations based on the SSP narratives and harmonized key input data, such as population and economic growth. They
serve to investigate and highlight interactions between societal and biophysical processes that might be important, e.g.,
leading to non-obvious outcomes. Specifically, we aim at quantifying the effects of ambitious energy mitigation strategies, a
global carbon tax on fossil fuels for each SSP on food consumption, yield development and cropland. Further we study the
impact and of mitigation-derived changes in climate and cropland on the terrestrial combination of these driving forces on the terrestrial
carbon balance to finally address the question whether or not a global sectorial carbon tax on the energy system is an
effective strategy to mitigate climate change at the global scale.

2 Methods

2.1 Reference and mitigation scenarios in the IAM framework

We developed two sets of scenarios based on the socio-economic developments described in key-elements of the SSP
scenario framework narratives (O’Neill et al., 2017), such as population and technology (Fig. 1). The SSP narratives
outline five plausible pathways that global societal development could follow in the 21st century and are characterized by the
development of key elements, such as population, equity, economy, trade, lifestyle, policies, technology and energy intensity
(O’Neill et al., in press 2017). The SSP narratives do not take into account potential impacts of climate change or new
climate policies and can thus be considered reference scenarios with respect to climate change (O’Neill et al., 2013). The
first set of scenarios used in this study is strictly based on elaborated by translating the SSPs and thus consists of
five reference scenarios where the SSP narratives into model parameter values. As no new climate polices were considered.,
the scenarios of this first set are hereinafter referred to as reference scenarios. A second set of scenarios complemented each
reference scenario with (“mitigation scenarios”) was elaborated, considering a mitigation strategy consistent with relevant
aspects with the reference scenario storyline. The mitigation measure selected reflecting the assumed mitigation strategy in the respective scenario. Mitigation measures considered were limited to consequences of the introduction of a global carbon tax on fossil fuels targeting overall reductions in energy use
and the replacement of fossil fuels with renewable energies, including bioenergy. Carbon taxes are generally regarded as an
effective economic incentive to reduce greenhouse gas emissions and lead to less volatility in emissions prices than quantity
restrictions as in carbon trading schemes (Golosov et al., 2014; Hassler et al., in press 2016a). Instead, the tax can be set
equal to the expected damage of a marginal unit of emissions allowing market participants to take these damages into
account when making economic decisions.
Mitigation through carbon sequestration, e.g. by afforestation schemes or carbon capture and storage technology, was not considered. However, the five mitigation scenarios encompass strategies that are assumed to affect the speed and strength of technological growth of energy production technologies and infrastructure, alongside the level of global carbon tax imposed in the mitigation scenarios. Instead of defining a target (e.g. global average temperature increase of less than 2°C) and designing a climate policy that is likely to achieve this target (as in the Shared Policy Assumptions, SPAs, see Kriegler et al., 2014), we chose to assign mitigation strategies that are consistent with the challenges for mitigation implied by each SSP. This approach tests the maximum capacity of the narrative. For example, with larger challenges to mitigation for each SSP in the carbon tax level would be less optimal, while the energy sector and results will indicate if more efforts are needed to reach certain targets. The level of the global carbon tax is optimal in scenarios with low challenges to mitigation. The SSPs have key characteristics of the SSP narratives (Fig. 1) result in varying challenges for mitigation due to their different key characteristics (Fig. 1), as for example the high energy demand in SSP5 “Taking the highway” and the slow technological change in SSP3 “A rocky road” (O’Neill et al., in press 2017). The differences in non-climate policies and institutions contribute as well to varying challenges for mitigation, as e.g. For example, the environmental awareness and effective institutions in SSP1 “Taking the green road” decrease the challenge for mitigation compared to e.g. SSP5 “Taking the highway” (O’Neill et al., in press). The SSPs are used to parameterize processes such as the development of energy technologies and available labour in a climate economy model (Fig. 2, 2017). Thus, high challenges for mitigation are not the result of political resistance per se in the SSP narratives. The presented novel IAM framework (Fig. 2) combines three previously published models, which are described in more detail in section 2.2.
Figure 2. Overview of the novel Integrated Assessment Modelling (IAM) framework showing input data sets in blue, component models in orange and information flows/intermediate results in green. Final results are displayed in red. The Representative Concentration Pathways (RCPs) are input to the climate model and the Shared Socio-economic Pathways (SSPs) are input to the climate-economy model and the land-use model. Damage to gross world product (GWP) is input to the land-use model. \(\Delta \) signifies the distances between emissions predicted by the climate-economy model and implied by RCPs, used as inverse weights to create yield time series as input to the land use model.

The First, the climate-economy model calculates the social cost of carbon emissions from the energy sector, equivalent with the optimal carbon tax and the damage to gross world product (GWP). Damages are determined as a function of simulated mean global temperature in turn driven by the endogenously determined emission path. Thus, the climate-economy model is used to create emission scenarios, assess damage to GWP and simulate renewable and fossil energy demands (for details see Sect. 2.2.1). Further, the SSPs provide input data for population and economic development and characterize technological change and consumption patterns, required as input to a socio-economic land-use model. The land-use model reconciles demand for food, feed and bioenergy implied by the scenario assumptions with the biophysically-determined supply (productivity) of these commodities per unit land area on a country-by-country basis, and translates this into cropland changes (for details see Sect. 2.2.2). The land-use model uses yield scenarios, which are the result of calculating the distances of the emission scenarios (indicated by \(\Delta \) in Fig. 1) to the RCPs and using these as inverse weights to create yield time series (one per SSP, see Appendix A5; Engström et al., 2016a) based on simulated cropland productivity from an ecosystem model (for details see Sect. 2.2.3). This approach streamlines the total number of scenarios (10 instead of theoretically (not necessarily plausible) 40 scenarios (5 SSPs x 4 RCPs x 2 (reference and mitigation scenario))) and simultaneously removes the need to compromise with single selections of SSP-RCP combinations.
The land-use model uses the scenario-specific damage to GWP (downscaled to damage on gross domestic product (GDP), see section 2.2.2) and yield data to explore the indirect impact of damages of GWP on food consumption (less income, less consumption) and yield development, (less income, less investments in yield improving technologies), as well as the direct impact of bioenergy demand on cropland area in each country. Resulting cropland changes are downscaled to grid cell level (see Appendix A7) and the impact on terrestrial carbon balance of cropland changes, as well as taking into account the mitigation-derived reduced amelioration of climate change, on the terrestrial carbon balance is estimated by the ecosystem model.

2.2 Component models

2.2.1 Climate-economy model

The climate-economy model is a modern macro model with micro-foundations to represent the economy. This model allows us to study how, for example, different carbon taxes affect the economy by allowing taxes to be an input in the profit maximization of energy providing firms. The model is also in line with macroeconomics as taught to graduate students of economics. The climate-economy model is a dynamic general-equilibrium model that predicts the joint evolution of the global climate and economy, operating at the global scale (Golosov et al., 2014). In the model, forward-looking agents decide how much to consume and save. Firms make production decisions, (regulating supply and demand), taking prices and taxes as given. The use of three different types of energy, namely oil, coal and clean energy (renewables and nuclear, free of fossil carbon emissions), is determined as a market outcome such that supply equals demand at all points in time. The fact that markets are modelled explicitly makes the model different from the most popular economic models used to study climate change and therefore well suited to study how different policies, e.g., carbon taxes at different levels, affect the market outcome.

Golosov et al. (2014) show that the common assumption of a quadratic convex damage function constructed by Nordhaus (2008) using a bottom-up approach in combination with the logarithmic relation between atmospheric CO₂-concentration (proportional to the atmospheric carbon pool) and forcing implies that the marginal damage flow elasticity (logarithm of GWP) is approximately constant. Specifically linear in the CO₂-concentration. Thus, a marginal unit of airborne carbon has an approximately constant percentage impact on GWP independent of the CO₂ concentration. Golosov et al. (2014) calculate the damage elasticity (γ) to 2.38×10^{-5} per airborne GtC implying that an extra GtC in the atmosphere reduces the flow of GWP by 2.38×10^{-3} percent. Due to the large uncertainty about this value, our scenarios will also include substantially higher damage elasticities. Finally, Golosov et al. (2014) show that the optimal carbon tax is proportional to GWP with a proportionality factor given by the product of the expected value of γ and the carbon duration D defined as in Eq. (1):
\[
D \equiv \int_{0}^{\infty} e^{-\rho t} \psi(t) \, dt
\]

(1)

where \(\rho \) is the rate at which future welfare is discounted and \(\psi(t) \) is the share of a unit of carbon emissions that remain airborne \(t \) units of time after it was emitted.

The model endogenously solves for the use of the three types of energy and carbon emissions. Key parameters determining the emissions paths are the rate of growth in the efficiency of producing coal \((A_{2,g}) \) and clean energy \((A_{3,g}, \text{ where clean energy includes nuclear energy and renewables}) \) and the elasticity of substitution \((se) \) between these types of energy in the production of final goods. These efficiencies measure the amount of energy services produced per unit of labour input (man hours) in the different energy sectors. Over time, technological improvements increase the energy efficiencies. A higher growth rate in the efficiency of coal (clean energy) production leads, as long as other variables are held constant, to slower price growth and faster growing use of coal (clean energy). The sensitivity of this mechanism is determined by how substitutable the different types of energy are in the production of final goods, parameterized by the elasticity of substitution \((se) \). Baseline assumptions about these parameters are listed in Table 1 and are assumed to be amenable for scenario specific developments.

To characterise the different socio-economic developments in the reference and mitigation scenarios we will make different assumptions about the parameters as shown in Table 1. The technological growth rates are allowed to differ across mainly influenced by the technological development described in the SSP’s, but to a less extent also between the reference and mitigation scenarios. Scenario assumptions (stronger technological growth). Strictly speaking, the economic model does not contain a mechanism whereby policy makers could affect these growth rates. However, it would be straightforward to allow the growth rates to be determined by how R&D efforts are allocated between different uses. This would make it possible for policy makers to partly control relative and absolute technology growth rates without important changes in the model’s predictions (see e.g., Hassler et al., under review 2016b, for an example of endogenous energy-related technical change). A similar argument can be made regarding the substitution elasticity where it is assumed that policy makers can facilitate a transition to a cleaner energy production by slightly increasing the elasticity. However, in all cases, the elasticity is fairly close to unity.

| Table 1. Parameters in climate-economy model modified for scenarios. |
|---------------------------------|----------------|----------------|----------------|
| Parameter | Abbreviation | Baseline value | Unit |
| Growth in production efficiency of coal \(A_{2,g} \) | 2 | annual growth in % |
| Growth in the efficiency of clean \(A_{3,g} \) energy technologies | 2 | annual growth in % |
| Substitutions elasticity between \(se \) different energy sources | 0.95 | |

447
<table>
<thead>
<tr>
<th>Damage elasticity factor</th>
<th>γ</th>
<th>2.38×10^{-5} per airborne GtC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of carbon tax</td>
<td>τ</td>
<td>0, 1 fraction of optimal carbon tax</td>
</tr>
</tbody>
</table>

2.2.2 Land-use model and coupling to the climate-economy model

The land-use model PLUM (Parsimonious Land-Use Model) simulates changes in cropland coverage on the basis of changes in cereal, meat and milk consumption and changes in cereal yield in 168 countries (Engström et al., 2016b). Calculations of food demand are dependent on population and economic development and are described by statistical relationships revealed by historical country-level statistics from reported data (FAOSTAT, 2016). The coefficients characterizing these relationships are used as scenario parameters. Scenario values for scenario parameters are based on the SSP characteristics as previously described in Engström et al. (2016a). Population, economic development and the share of urban population on total population are input to PLUM and are used as provided by the SSP database (SSP-Database, 2015). Changes in expected production are simulated via a global rule-based trade mechanism. The expected cereal production together with cereal yield is used to simulate changes in cereal land. During the simulation period it is assumed that actual national yields in PLUM are changing towards potential yield, simulated for multiple RCP \times GCM climate trajectories by the ecosystem model LPJ-GUESS (see Sect. 2.2.3 and Engström et al., 2016a), depending further on each scenario’s technological growth, economic development and technology transfer. Finally, changes in total cropland are assumed to be proportional to changes in cereal land, using the actual proportions of cereal land to total cropland in 2000 (Engström et al., 2016b). In previous applications of PLUM (Engström et al., 2016a) the static feed ratio (assumption as to how much of the consumed meat is produced from cereal feeds vs. grazing) was identified as a cause for underestimation of cropland demand for scenarios with meat-rich diets. Here we assumed the feed ratio to increase proportional to increases in consumption of animal products if the initial feed ratio is very low, restricted by a scenario specific maximum for the feed ratio ($feedRatioCap$; see Appendix A1).

The simulated damage to GWP from the climate-economy model was downscaled to country level GDP, adjusting the shares covered by high, medium and low income countries, depending on the level of social equity of each SSP ($equity$, see Appendix A2). This formulation reflects the assumption that low income and vulnerable countries would not receive much support by high income countries to deal with the consequences of climate change in the case of low equity. The downscaling approach reinforces the pattern of decreasing economic inequalities across low, medium and high income countries for high equity scenarios, while it slows down the decreasing income gap for scenarios with low equity (see Table A. 1, Appendix A2).

The output of clean energy from the climate-economy model was used to derive bioenergy scenarios, which were then translated into explicit cropland demands for bioenergy in PLUM. To arrive at the bioenergy scenarios we assumed that the
shares of different clean energy sources (nuclear and renewables, i.e. hydro, wind, solar and bioenergy) projected by the World Energy Outlook (WEO) scenarios (current policy, new policy and 450ppm; Appendix A3; OECD/IEA, 2012) are representative for scenarios with high, medium and low challenges towards mitigation in the SSP challenge space (Fig. 1). The resulting projections of bioenergy are assumed to be produced from a range of available sources, such as industrial waste, forestry residues, agricultural by-products and energy crops. Energy crops in the WEO scenarios are defined as “those (crops) grown specifically for energy purposes, including sugar and starch feedstocks for ethanol (corn, sugarcane and sugar beet), vegetable-oil feedstocks for biodiesel (rapeseed, soybean and oil palm fruit) and lignocellulosic material (switchgrass, poplar and miscanthus)” (OECD/IEA, 2012). In PLUM we only explicitly model the share of bioenergy produced from energy crops (excluding lignocellulosic feedstocks), which was 3% in 2000 (OECD/IEA, 2012). The future contribution of energy crops to total bioenergy potential is highly uncertain depending on assumptions as to available croplands and yield development, but considering sustainability constraints has been suggested to range from 30-50% in 2050 (Haberl et al., 2010). Lignocellulosic feedstocks are expected to play a major role in future bioenergy production, but as they are excluded here we assume a lower contribution of energy crops to total bioenergy of maximum 15% in 2100 (shareBEcr, see Appendix A4). The modelled bioenergy production occurs here predominantly on abandoned cropland that was set aside in previous time-steps due yield improvements and/or decreasing demand, but if this is not available it is expanded into remaining natural vegetation (grasslands and or forest; see Appendix A4). Bioenergy production is assumed to be predominantly produced in countries with large bioenergy production today as well as countries with sufficient remaining natural vegetation (in cases where bioenergy cannot be produced on abandoned cropland). Furthermore, bioenergy production efficiency is assumed to increase at different rates depending in the scenario, bound by the upper range of values reported today (efficiencyBE see Appendix 4; Börjesson and Tufvesson, 2011).

2.2.3 Ecosystem model, downscaling cropland and the terrestrial carbon balance

The managed land version of the dynamic vegetation ecosystem model LPJ-GUESS (Smith et al. 2001, 2014; Lindeskog et al., 2013), was used to simulate cereal yields (wheat, maize, millet and rice) as input to PLUM as in Engström et al. (2016a). The simulations capture the impact of climate change on yield developments on a 0.5 × 0.5° global grid through changes in precipitation, temperature patterns and CO2 concentration (derived from the RCPs, see Engström et al., 2016a). The initial difference between actual and potential yield was established also by scaling the simulated yield using algorithm to changes in climate. No other changes (e.g., the introduction of new varieties) in cropland management were considered in these simulations. Simulated yields from LPJ-GUESS were used to construct per grid cell anomalies, which were then applied on actual and potential yield from Mueller et al. (2012) for the year 2000. The scaling factor was used throughout 2000-2100. For use in PLUM, actual and potential yields were aggregated from grid cells to country level using area fractions from the MIRCA2000 data set (Portmann et al., 2010), which was used to calculate the initial yield gap. The SSP-RCP matrices for the reference and mitigation scenarios (Appendix A5) were used to weight simulation outputs with simulated climate driven yield anomalies for the four RCPs together. During the
The yield gap does not change as a proportion of potential yield (see Engström et al. (2016a) for details on how the yield gap is modelled). However, as potential yield is computed dynamically based on climate input, resulting in an anomaly relative to baseline conditions, the absolute magnitude of the yield gap can change.

The country-level changes in cropland area simulated with PLUM were applied to a base map of current land cover (cropland and grassland) extent on a 0.5 × 0.5° global grid (Hurtt et al. 2011). A downscaling algorithm was used to disaggregate land cover from country to grid cell level based on a weighted combination of proximity to existing cropland and suitability based on simulated potential crop productivity, capturing both expansion and contraction of current land cover extent. A detailed description of the downscaling algorithm is provided in Appendix A7.

To estimate the combined effects of biophysical drivers and land use change on biospheric terrestrial carbon balance, we applied LPJ-GUESS globally on the 0.5 × 0.5° grid of the downscaled land use data, simulating natural vegetation (also encompassing forest), cropland and pasture and the dynamic transitions between these land cover types (Lindeskog et al., 2013). Natural vegetation in the model emerges as the result of growth and competition for light and soil resources among woody plant individuals and a herbaceous understory in each of a number (5 in this study) of replicate patches (0.1 ha), representing stochastic variation in the history of vegetation evolution (succession) and stand age following disturbance across the landscape of a simulated grid cell (Smith et al., 2014). Multiple plant functional types (PFTs) co-occur and compete within each patch, and age/size classes are distinguished for trees, capturing effects of stand demography on biomass accumulation and turnover. C-N interactions were taken into account, following Smith et al. (2014). Pasture is represented by herbaceous (C₃ or C₄ grass) PFTs, harvested yearly. Cropland is represented by wheat and maize following the implementation of Olin et al. (2015), with relative areas aggregated from the MIRCA2000 data for the year 2000 (Portmann et al., 2010), and taken to represent all C₃ (wheat) and C₄ (maize) crops globally, including energy crops. Irrigation was applied for cropland, according to historical global irrigation data for the year 2000 (Portmann et al., 2010), while nitrogen fertilization according to followed historical data for the period 1901-2006 (Zaehle et al., 2010). Tillage and the planting of cover-crops were cropland management options considered in all simulations (Olin et al., 2015), and no future changes in management for a given cropland type were considered.

For the historical period (1700-2000), we used model input encompassed cropland, pasture and natural area fraction data fractions for 1700-2000 from Hurtt et al. (2011), global atmospheric CO₂ concentrations for 1850-2000 from the CMIP5 archives (Taylor et al., 2012) and nitrogen deposition data for 1850-2000 from Lamarque et al. (2011). For future simulations (2001-2100) climate input to the ecosystem model simulations was provided by bias-corrected fields of mean monthly temperature, precipitation and incoming shortwave radiation for the atmosphere-ocean general circulation model (GCM) IPSL-CM5A-MR (IPSL, Dufresne et al., 2013). IPSL was selected as it simulates changes in carbon balance in response to the simulated LULCC and climate change that are located in the middle of the ensemble spanned by all GCMs (Ahlström et al., 2012), which was confirmed by running three additional GCMs (GFDL-CM3 (Donner et al., 2011), MIROC5 (Watanabe et al., 2010) and MRI-CGCM3 (Yukimoto et al., 2012)) for medium LUC (SPS2m) and RCP4.5. The climate model GCM-generated forcing fields were bias corrected relative to observed historical climate from the CRU TS3.0
Carbon pools in the model were initialized to equilibrium with the early-20th century historical climate by a 500 year “spin-up” forced by prescribed 1700 land cover, 1850 atmospheric CO₂ concentration and nitrogen deposition, 1901 nitrogen fertilizer applications for cropland, and detrended monthly climate time series for 1850-1879, cycled repeatedly.

Carbon cycle simulations were performed for the scenario period 2001-2100, separately for the reference and mitigation scenarios for each SSP. Time-varying cropland-area fractions simulated by PLUM were applied as anomalies relative to baseline (2000) land use from the Hurtt et al. (2011) product, downscaled from country to grid cell level, as described above. Separate simulations were performed for each RCP × GCM combination; nitrogen deposition data were taken from Lamarque et al. (2011) for the relevant RCP. Relative crop type distribution, irrigation, nitrogen application (after 2006) and tillage intensity were kept constant at modern (2006) levels. Model outputs were aggregated to grid cell averages for each SSP, weighting simulations according to the probabilistic mapping of each SSP to each RCP shown in the Appendix (Table A.3).

2.4 Parameterizing the models for the reference and mitigation scenarios

2.4.1 Parameter settings for the climate–economy model

The parameterization of scenarios for energy, atmospheric carbon dioxide concentration and damage on GWP for the reference and mitigation SSPs were created by parameterising the climate–economy model was oriented at a selection ofaccordingly to the development described in the SSP key elements specifying the SSPs (O’Neill et al., in press 2017), listed in Table 2. Additionally to these key elements we included the second axis of the challenge space, the challenge for adaptation, to derive a sensitive parameterization of the damage elasticity factor (γ) for each scenario. In the climate–economy model, the damage factor γ describes the impact of emissions and climate change on GWP. Higher γ means that in mitigation scenarios emissions will need to be decreased substantially to avoid anticipated higher damages.

Table 2: Challenges for mitigation and adaptation and energy-related key elements for the five SSPs.

<table>
<thead>
<tr>
<th>Key element</th>
<th>SSP1: Taking the green road</th>
<th>SSP2: The middle of the road</th>
<th>SSP3: A rocky road</th>
<th>SSP4: A road divided</th>
<th>SSP5: Taking the highway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenge for adaptation</td>
<td>low</td>
<td>medium</td>
<td>high</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Challenge for mitigation</td>
<td>low</td>
<td>medium</td>
<td>high</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>Energy technological change</td>
<td>Directed away from fossil fuels, toward efficiency and renewables</td>
<td>Some investment in renewables but continued reliance on fossil fuels</td>
<td>Slow technological change, directed toward domestic energy sources</td>
<td>Diversified investments including efficiency and low-carbon sources</td>
<td>Directed toward fossil fuels; alternative sources not actively pursued</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Carbon intensity</td>
<td>low</td>
<td>medium</td>
<td>high in regions with large domestic fossil fuel resources</td>
<td>low/medium</td>
<td>high</td>
</tr>
<tr>
<td>Energy intensity</td>
<td>Low</td>
<td>Uneven, higher in LICs</td>
<td>High</td>
<td>Low/medium</td>
<td>High</td>
</tr>
<tr>
<td>Fossil constraints</td>
<td>Preferences shift away from fossil fuels</td>
<td>No reluctance to use unconventional resources for domestic supply</td>
<td>Anticipation of constraints drives up prices with high volatility</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

The challenges for adaptation are low for SSP1 “Taking the green road” and SSP5 “Taking the highway”, medium for SSP2 “Middle of the road” and high for SSP3 “A rocky road” and SSP4 “A road divided”, which was translated into quantitative values for the damage factor γ, see Table 3. Golosov et al. (2014) show that γ of 5×10^{-5} per airborne GtC fairly well approximates a middle-range climate sensitivity of 3°C (i.e. a doubling of the atmospheric carbon pool leads to a 3°C increase in global mean temperature) and a damage function following Nordhaus (2007). Acknowledging the limited evidence for the calibration of γ, we choose this to represent a relatively benign situation and also use higher gammas. For the scenarios we therefore chose 5, 10 and 15×10^{-5} per airborne GtC to represent low, medium and high damage factors.

The parameter settings for γ are assumed to be equal in the reference and mitigation scenarios per SSP. For the reference scenarios no carbon tax is assumed ($\tau = 0$), see Table 3. We chose Nordhaus discount rate for all scenarios (1.5% per year).

As for the reference scenarios, the SSP narratives form the basis of the mitigation scenarios. In addition to introducing carbon taxes, mitigation strategies could, as described above, encompass the following changes relative to the reference scenario: (1) reduced growth of extraction efficiency of coal; (2) increased growth of efficiency of green technologies; and (3) The increased substitution elasticity in order to further stimulate the production of green (=clean) energy.

All these changes should be consistent with the storylines of the SSPs and with the challenges for mitigation (high, medium, low) of the respective SSP. Parameter choices are shown in Table 3. The level of the carbon tax τ (Table 1) for the mitigation scenarios is a fraction of the optimal carbon tax (τ). We assumed that the mitigation strategies for scenarios...
with low challenges to mitigation (SSP1 “Taking the green road” and SSP4 “A road divided”) imply an optimal carbon tax ($\tau =1$). The optimal carbon tax reduces emissions to the level where the costs of avoiding emissions and the cost of avoided damages are at equilibrium. The mitigation strategy for SSP2 “Middle of the road” (medium challenge to mitigation) consists of 30% of the optimal carbon tax ($\tau =0.3$). For scenarios with high mitigation challenges (SSP5 “Taking the highway” and SSP3 “A rocky road”) we assumed that the mitigation strategy is 10% of optimal carbon tax ($\tau =0.1$). This reflects the belief that political problems associated with introducing a global tax may lead to a tax substantially lower than the optimal (see Appendix A6).
Table 3. Parameter settings in the climate–economy model (see Table 1) for reference (r) and mitigation (m) scenarios based on the SSPs and the challenge for adaptation (damage elasticity factor, γ) and mitigation (carbon tax, τ, as a proportion of optimum, for mitigation scenarios).

<table>
<thead>
<tr>
<th>Scenario</th>
<th>A_{2g}</th>
<th>A_{3g}</th>
<th>se</th>
<th>γ</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r m</td>
<td>r m</td>
<td>r m</td>
<td>r m</td>
<td>r m</td>
</tr>
<tr>
<td>SSP1 “Taking the green road”</td>
<td>0.5 0.0</td>
<td>2.5 2.5</td>
<td>0.80</td>
<td>0.95</td>
<td>5</td>
</tr>
<tr>
<td>SSP2 “The middle of the road”</td>
<td>2.0 2.0</td>
<td>1.5 2.0</td>
<td>0.85</td>
<td>1.05</td>
<td>10</td>
</tr>
<tr>
<td>SSP3 “A rocky road”</td>
<td>1.2 1.2</td>
<td>1.0 1.2</td>
<td>0.95</td>
<td>0.95</td>
<td>15</td>
</tr>
<tr>
<td>SSP4 “A road divided”</td>
<td>1.5 1.0</td>
<td>1.5 2.0</td>
<td>0.90</td>
<td>1.05</td>
<td>15</td>
</tr>
<tr>
<td>SSP5 “Taking the highway”</td>
<td>2.2 2.0</td>
<td>0.0 0.0</td>
<td>0.0 1.05</td>
<td>1.20</td>
<td>5</td>
</tr>
</tbody>
</table>

5.2.4.2 Parameter settings for land use model

For the parameterization of the land use model PLUM for the five reference scenarios we relied on the parameterization as in Engström et al., (2016a), except for the parameters steering the yield gap (development, investment and distribution of technologies improving yields) were set according to the SSP narratives and the relevant SSP key elements. For SSP1 “Taking the green road” it was assumed that the “increasingly effective and persistent cooperation and collaboration of local, national and international organizations and institutions” (O’Neill et al., 2017) would result in a strong trend of technological transfer and thus globally decreasing yield gaps (and thus increasing crop yields). The scenario parameters newly introduced in this study, e.g., the maximum feed ratio $feedRatioCap$ (Table 4, Appendix A1), were parameterised as listed in Table 4. The second new scenario parameter is $equity$ which directly relates to the human development key element “Equity” of the SSPs as described in O’Neill et al. (in press, 2017). Equity is described to be high for SSP1 “Taking the green road” and SSP5 “Taking the highway”; medium for SSP2 “Middle of the road” and SSP4 “A road divided”; and low for SSP3 “A rocky road” (O’Neill et al., in press, 2017). In PLUM, $equity$ steers which downscaling approach for damage to GWP is used, see Table 4.

The implementation of bioenergy in PLUM introduced two additional scenario parameters, $shareBEcr$, which describes the increase of bioenergy produced from energy crops, and $efficiencyBE$, which accounts for efficiency improvements in energy conversion. These two scenario parameters were permitted to vary across the SSPs, and for the reference and mitigation cases. The share of bioenergy that was produced from energy crops in the period 2000-2010 was 3% and was assumed to increase to up to 6% in 2100 for the reference scenarios with sustainability focus (SSP1 “Taking the green road”) and...
reference scenarios which, at least partly, are strongly reliant on local energy sources (SSP3 “A rocky road” and SSP4 “A road divided”). For the fossil fuel focused SSP5 “Taking the highway” no changes from the initial values for the bioenergy scenario parameters were made, neither for reference or mitigation scenario. For the mitigation version of SSP1 “Taking the green road” the share of bioenergy crops was assumed not to increase further than in the reference scenario, due to the fact that the use of cropland for bioenergy production and its effect on sustainability can be negative in some cases.
Table 4. Parameter settings in the PLUM land use model for feedRatioCap (0.1-0.3: feed ratio increases for countries with feed ratios below 0.1-0.3 up to 0.1-0.3, that is a maximum 10%-30% of meat is produced with cereal feed for countries with initially low feedRatios), equity (1=high equity distribution, 0=equal distribution, -1=low equity distribution), the share of bioenergy that is produced from bioenergy crops in 2100 (shareBEcr, %, 3% being the initial value in 2100), the conversion efficiency of energy in biomass to bioenergy that is achieved in 2100 (efficiencyBE, %, 6465% being the initial value in 2000) for reference (r) and mitigation (m) scenarios based on the SSPs.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>feedRatioCap</th>
<th>equity</th>
<th>shareBEcr</th>
<th>efficiencyBE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>m</td>
<td>r</td>
<td>m</td>
</tr>
<tr>
<td>SSP1 “Taking the green road”</td>
<td>0.1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SSP2 “The middle of the road”</td>
<td>0.2</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SSP3 “A rocky road”</td>
<td>0.1</td>
<td>0.1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>SSP4 “A road divided”</td>
<td>0.2</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SSP5 “Taking the highway”</td>
<td>0.3</td>
<td>0.3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

By contrast, for SSP4 “A road divided”, which, as SSP1 “Taking the green road”, has a low challenge to mitigation but less focus on sustainability, it was assumed that bioenergy production from energy crops would increase to up to 9% in 2100. SSP3 with its high challenge to mitigation was assumed to keep the share of bioenergy crops as in the reference scenario, but increase the efficiency in bioenergy conversion slightly.

3 Results

3.1 Global energy scenarios, atmospheric carbon, damage to GWP and cropland development

With no mitigation, global energy use increases steeply for all scenarios, least for SSP1 “Taking the green road”, and spans a range of 1000-2000 EJ by 2100 (Fig. 3). The predominant energy sources across the reference scenarios differ. While in SSP5 “Taking the highway”, fossil fuel dominates, in all other reference scenarios, renewable energies and bioenergy contribute to the rising energy demand, especially for the sustainability-oriented SSP1 “Taking the green road”. The introduction of a global carbon tax on fossil fuels as mitigation strategy effectively reduces the energy consumption to around 1000 EJ in 2100 for all scenarios (Fig. 3). However, the contributions of fossil fuels, renewable energies and bioenergy to total energy supply differ greatly across the mitigation scenarios and reflect the varying global carbon taxes.
Figure 3. Primary energy demand (0-2000 EJ; vertical axis of internal panels) predicted simulated by the climate-economy model for the reference (r) and mitigation (m) versions of each SSP scenario (see Fig. 1) for the time period 2010-2100 (horizontal axis of internal panels). The dashed lines indicate the total primary energy of the official SSP realisations (SSP database, 2015). The reference scenarios are compared with the baseline marker scenarios and the mitigation scenarios are compared with the marker SSP1-RCP2.6, SSP2-RCP4.5, SSP3-RCP4.5, SSP4-RCP2.6 and SSP5-RCP6.0 scenario respectively.

Assumed political support for carbon taxes in scenarios with Effective, globally collaborating institutions and environmental awareness contribute to low challenges for mitigation (see Sect. 2.4 in SPP 1) leads to high carbon taxes (SSP1 “Taking the green road” and result in high carbon taxes (115 US$ per ton carbon at 2010 GWP and SSP4 “A road divided”: 344 US$ per ton carbon at 2010 GWP), decreasing the contribution of fossil fuel to total energy use to around 10% in 2100. By contrast, for SSP5 “Taking the highway” the global carbon tax is only 11 US$ per ton carbon and fossil fuels remain the main energy source even in the mitigation scenario.

The concentration pathway of atmospheric carbon for SSP5 “Taking the highway” marks the upper end of the simulated concentration pathways, though it remains lower than the very steep trajectory of the RCP8.5 radiative forcing scenario (Fig. 4, panel a).
Figure 4. (a) Atmospheric carbon (GtC) including carbon trajectories (GtC) for the four RCPs, (b) corresponding damage to GWP (%), (c) global cropland for bioenergy (Mha) and (d) global cropland, including cropland for bioenergy (Mha) for reference and mitigation scenarios.
Only SSP1 “Taking the green road” achieves an atmospheric carbon pathway close to RCP4.5 for the reference case, while the remaining scenarios are all clustered around RCP6.0 (Fig. 4, panel a). The introduction of a global carbon tax and the subsequent reduction of energy use and transition towards renewable energies yield considerably lower concentration pathways for the mitigation scenarios. SSP1 “Taking the green road” and SSP4 “A road divided” approach RCP2.6, while SSP2 “Middle of the road” and SSP3 “A rocky road” are between RCP2.6 and RCP4.5, leaving SSP5 “Taking the highway” with the highest mitigation concentration pathway (close to RCP6.0, Fig. 4, panel a).

If not mitigated, climate change causes damage to GWP by up to 12% in 2100 (SSP3 “A rocky road” and SSP4 “A road divided”, Fig. 4, panel b). For scenarios with low and medium challenges for adaptation the damage is 3-9% of GWP in 2100. Climate change mitigation strategies reduce the impact to below 8% damage to GWP in 2100 for all scenarios (Fig. 4, panel b). The largest reduction of damage occurs for SSP4 “A road divided” (from 12% to 5% of GWP, Fig. 4 and Fig. 5) where the low challenges for mitigation enable a strong reduction in emissions, while the high challenges for adaptation make such reduction very desirable. Similar reasoning explains why the global carbon tax in SSP4 “A road divided” is significantly higher than in the other scenarios. The impacts of the avoided damage in the mitigation scenarios on food consumption, yields and cropland are presented in the next section.

The contribution of bioenergy to the total energy supply increases generally from the reference case to the mitigation case (except SSP5 “Taking the highway”), but is especially pronounced for the mitigation scenario of SSP2 “Middle of the road” and SSP4 “A road divided” (Fig. 3). Consequently, the global cropland area for bioenergy production increases rapidly in the mitigation scenarios; as much as ten times for SSP4 “A road divided” between 2000 and 2100 (Fig. 4, panel c). The rapid expansion of cropland area for bioenergy production is the main driver for increases in total global cropland area for the mitigation scenarios of SSP2 “Middle of the road” and SSP4 “A road divided” (Fig. 4, panel d). Even for SSP1 “Taking the green road” bioenergy production is the prevailing driver of cropland expansion. However, in this scenario the cropland expansion for bioenergy is counteracted by the sustainable lifestyle choices (e.g., decreasing meat consumption) and strong increases in yields, which together lead to a reduction of cropland area for food production. Quite differently, very low levels of technological change and thus very slow yield development paired with a strongly increasing population (12.1 billion people in 2100) result in the massive expansion of global total cropland for SSP3 “A rocky road” in both the reference and mitigation scenario. The trend of expanding and stabilizing global cropland in most scenarios is contrasted by the development of global cropland for SSP5 “Taking the highway” in which global cropland increases and peaks in the first half of the 21st century, declining in the second half. The initial cropland expansion is due to the resource-intensive lifestyle of a slightly growing, much richer population, while bioenergy production does not play a role in this fossil fuelled scenario. For SSP5 “Taking the highway” strong yield developments and a declining population with saturated food demands lead to global cropland contraction in the second half of the 21st century.
3.2 Impact of mitigation on consumption, yields and cropland area

The avoided damage to GWP due to the introduction of mitigation strategies is at almost 8% in 2100 largest for SSP4 “A road divided”, followed by SSP2 “Middle of the road” and SSP3 “A rocky road” (each around 5% in 2100, Fig. 5). The consumption of milk and meat is dependent on income and thus higher income associated with lower climate-induced damage enables additional consumption. For SSP3 “A road divided” the additional global average meat consumption (due to avoided damage) is close to 1 kg meat per capita in 2100 (Fig. 5). In developing countries additional meat consumption is up to 1.5 kg meat per capita in 2100. However, compared with uncertainties within the relationship of income and meat consumption, as well as in lifestyle and cultural preference (e.g., for SSP3 “A rocky road” the global average meat consumption in 2100 is 52 ± 10 (1 SD) kg meat per capita (Engström et al., 2016a), such an impact of mitigation on per capita meat consumption appears relatively modest.

Differently to meat and milk (similar impact as for meat consumption, not shown) consumption, global average yield and global cropland area can be affected not only by avoided damage to GWP, but also by changed bioenergy production and yield. Each SSP’s yield is the result of weighing the yield simulated by the ecosystem model under each RCP depending on the distance of the SSP’s concentration pathway to that RCP (see Sect. 2.2.3 and Appendix A5). For example, for the yield of SSP2 “Middle of the road” the yields from RCP2.6, RCP4.5, RCP6.0 and RCP8.5 were weighted with 0.09, 0.15, 0.63 and 0.12 respectively (these numbers are called the “yield distribution”, see Appendix A5 for yield distributions of the other scenarios). The yield distributions change when mitigation strategies are introduced, as the concentration pathway for each SSP is changed (Fig. 4, panel a). Due to investments in agricultural management, yield development is assumed also to be dependent on income, and thus avoided damage to GWP can increase yields in mitigation scenarios relative to reference scenarios.

![Figure 5. Impact of avoided damage to GWP (% of total GWP) due to mitigation on global aggregated meat consumption in 2100 relative to 2000 for the five SSPs.](image)
For all scenarios, the avoided damage to GWP leads to slightly larger global average yields in the mitigation scenario compared to the reference case (up to 1%, Fig. 6, panel a). Changes in yield distributions have a stronger positive impact in the mitigation scenario of SSP1 “Taking the green road” (almost 3%) and SSP2 “The middle of the road” (1.5%), while the impact on yield in SSP5 “Taking the highway” is negative. Increased bioenergy production in the mitigation scenarios has a very small impact on global average yield, as this impact is only indirect due to different allocation of cropland areas (areas with lower or higher yields). By contrast, the increased bioenergy production is the absolute largest contributor to the difference in global cropland area between mitigation and reference scenarios (Fig. 6, panel b). This is most strongly so for SSP2 “Middle of the road” and SSP4 “A road divided”. Factors that resulted in larger yields in mitigation scenarios (avoided damage and yield distribution) counteract the cropland expansion caused by the increased bioenergy production (higher yields, less cropland expansion), though with only a few percentage points when compared to the magnitude of the direct impact of bioenergy on cropland expansion in mitigation scenarios.

Figure 6. (a) Difference between reference and mitigation scenarios for change in global yield between 2000 and 2100 (%) and (b) change in global cropland area between 2000 and 2100 (%). The grey bar gives the total differences (sum of differences due to damage, yield distribution and bioenergy), while the colored bars show the contribution of each causal factor to the total difference.
3.3 Spatially explicit cropland changes and impact on the terrestrial carbon balance

Cropland expansion in 2100 compared to 2000 (Fig. 7) can be observed in all scenarios in Sub-Saharan Africa, Brazil, Mexico, and in the Corn Belt and the Great Plains of North America. In the reference scenarios (all except SSP3 “A rocky road”) and also in the mitigation scenarios of SSP1 “Taking the green road” and SSP5 “Taking the highway” this cropland expansion is paired with cropland abandonment (green areas in Fig. 7) in other parts of North and South America, as well as in Eastern Europe and to some extent in Asia and Australia. An exception to this general pattern is SSP3 “A rocky road”, where cropland expansion is predominant across all fertile lands globally. This is due to the combination of high population growth with resource intensive lifestyles as well as low yield increases. In the mitigation scenario of SSP3 “A rocky road”, bioenergy is mainly produced from crops grown in Brazil and the US (150 Mha each), but also Russia and Indonesia (50 Mha each). Even in other mitigation scenarios with large increases in cropland for bioenergy production (> 600 Mha in SSP2 and SSP4 compared to reference scenario), the increase is mainly allocated in Brazil, the US, Russia, Indonesia and to a lesser extent in India, Canada and Australia. The same pattern of cropland allocation for bioenergy production can be observed for the mitigation scenario of SSP1 “Taking the green road” (200 Mha more cropland for bioenergy production compared to reference scenario). Interestingly, the very similar global aggregated cropland areas of the mitigation scenarios of SSP1 “Taking the green road” and SSP5 “Taking the highway” in 2100 (1725 Mha and 1722 Mha respectively) are distributed differently in the two scenarios: in SSP5 “Taking the highway” cropland changes led to more concentrated cropland areas in e.g. Sub-Saharan Africa, Central America and Russia, while in SSP1 “Taking the green road” there are more subtle changes over larger areas, e.g. in Brazil, the US, Indonesia, but also Sub-Saharan Africa.

The large expansions of cropland areas in SSP3 “A rocky road” causes widespread carbon losses in 2100 compared to 2000, with up to -50 kg m\(^2\) in the tropics (Fig. 8). Even in temperate zones where cropland expands into previously forested areas, larger carbon losses occur. Also in scenarios with comparatively modest cropland expansion compared to SSP3, terrestrial carbon stocks decrease, especially in tropical regions and regions with cropland expansion (Fig. 7).
Climate change leading to a longer growing season in temperature-limited high latitude ecosystems, and increases in ecosystem productivity caused by the direct effect of rising CO2 on the biochemistry of photosynthesis, have been identified as important drivers of the carbon balance of the terrestrial land surface (Le Quéré et al., 2015; Schimel et al., 2015), as simulated here for high latitude regions in all scenarios, and for wet tropical regions such as the Amazon and Congo Basin in all scenarios except to some extent SSP3.
After aggregating the changes in the terrestrial carbon pool at the global scale we found that the terrestrial biosphere is a carbon sink for most scenarios throughout the 21st century, but becomes a carbon source for scenarios with large cropland expansion (SSP3 “A rocky road” and SSP4m “An unequal world”, Fig. 9). The global net-increase for most scenarios is not necessarily primarily driven by LULCC, but by the effects of climate change and CO2 fertilisation (as described above). To isolate the effect of climate change vs. LULCC we performed simulations with constant land-use but changing climate (see Appendix A8, Fig. A4). These simulations suggest that without LULCC, the global terrestrial biosphere would act as a carbon sink for all scenarios (Appendix A8, Fig. A4). This would be most strongly the case for scenarios predominantly driven by high concentration pathways (RCP6.0 and RCP8.5, arriving at approximately 2175 GtC in 2100), but even for scenarios driven by the low concentration pathway RCP2.6 (arriving at approximately 2115 GtC in 2100).

LULCC erodes terrestrial C stocks for all scenarios by around 50 to 200 GtC by 2100. For SSP3 “A rocky road” the effect of the large-scale cropland expansion outweighs the climate change-driven sequestration of terrestrial carbon and the terrestrial
biosphere turns into a net carbon source in the second half of the 21st century. This occurs more strongly for SSP3m compared to SSP3r, mainly due to lower assumed atmospheric CO₂ concentrations in the mitigation scenario (higher weighting of low radiative forcing RCP scenarios; Appendix A5), resulting in less CO₂ fertilisation of plant production, an affect expressed particularly in the simulated carbon balance of the tropics (Figs. 8,9). Production of bioenergy for mitigation and the related increase in cropland area (> 800 Mha cropland for bioenergy production in 2100) contributes to shifting affected areas from a carbon sink into a carbon source, as seen for SSP4m “An unequal road” (Fig. 9). In the fossil fuelled SSP5 “Taking the highway”, bioenergy production does not increase, but the global carbon tax still reduces energy demand through enhanced energy efficiency, resulting in lower emissions, reflected in a greater weighting towards RCP6 in SSP5m and towards RCP8.5 in SSP5r (Appendix 5). However, the combined effects of climate, atmospheric CO₂ and land use result in almost identical carbon trajectories for the reference and mitigation cases of SSP5 (Fig. 9). SSP1m “Taking the green road” is the only scenario with expansion of cropland for production of bioenergy where the biosphere continues to be a strong carbon sink through the 21st century (Fig. 9).

Figure 9: Changes in global terrestrial biosphere carbon pool (GtC) from 2000 to 2100 for all SSPs, reference (r) and mitigation (m) case. The slope indicates whether the net ecosystem carbon balance (NECB) is a carbon source (negative slope) or carbon sink (positive slope).
4 Discussion

4.1 Findings in the context of other studies

We present a novel IAM framework and provide an new set of consistent SSP-scenario quantifications for energy supply, atmospheric carbon concentration, climate-induced damage to GWP and bioenergy production from energy crops, exploring impacts on food consumption, cropland change and terrestrial carbon storage. So far, the literature only includes scenario quantifications for a subset of SSPs, and for a limited set of scenario factors. For example, in the IPCC Fifth Assessment report, three models project future reference primary energy use in 2100 to range from 1350 to 1850 EJ in 2100 (Bruckner et al., 2014), which is a slightly narrower range than the reference primary energy that emerges from our analysis (1030-2150 EJ in 2100). Preliminary The SSP-scenario quantifications are available from the SSP database and suggest that primary energy for the complete set of all five SSPs will range from 667700 to 19201824 EJ in 2100 for the reference baseline case, and from 466562 to 13631316 EJ in 2100 under mitigation [considering only the marker scenarios and choosing the mitigation scenario with the RCP that is closest to our realization, (Fig. 3; SSP-Database, 2015)]. For the mitigation scenarios, this compares to 1087-1252 EJ of primary energy in 2100, estimated by the climate-economy model in our study. In the SSP database quantifications, energy from biomass production increases for all reference baseline scenarios (differently to our projections even for SSP5 “Taking the highway”), and is much more pronounced in the mitigation scenarios. For example, for SSP4 “A road divided” the mitigation scenario simulated with GCAM4 (SSP4-26-SPA4-V12) projects primary energy use from biomass of 492448 EJ in 2100, compared to 241111 EJ in 2100 in the reference baseline scenario (SSP4-Ref-SPA0-V12 Baseline). This increase is similar as in our study (reference: 191 EJ in 2100 vs. mitigation: 519 EJ in 2100) and is also accompanied by a strong increase in cropland area due to mitigation (28122936 Mha and 17221761 Mha in 2100 in the mitigation and reference baseline case, respectively; 2777 Mha and 1962 Mha, respectively, in our study) (SSP-Database, 2015). Similarly, the CO2 emission trajectories calculated from the climate-economy model compare with the CO2 emission trajectories reported in Riahi et al. (2017; Fig. A 2 in Appendix A8). Cropland projections for the preliminary SSP database quantifications cover a range from 14331052 to 2812936 Mha, which is comparable slightly wider compared to the ranges previously published in the literature. For example, Schmitz et al. (2014) analysed cropland development until 2050 for scenarios based on SSP2 “Middle of the road” and SSP3 “A rocky road”, taking into account a range of climate projections and agro-economic models, arriving at a range from 1400 Mha to 2300 Mha in 2050. A later model inter-comparison study (Alexander et al., under review 2017) including a larger set of models and scenarios (including all five SSPs) arrived at global cropland projections of 1100 to 2700 Mha in 2100. Our cropland projections for all scenarios, except SSP3 “A rocky road”, are within the range reported by other studies and modelling teams (1546 to 2777 Mha in 2100). Cropland projections for SSP3 “A rocky road” extend beyond this range (3950 Mha and 4237 Mha in reference and mitigation respectively); reasons are discussed below. Biomass losses in conjunction with the
extreme cropland increases projected under this scenario provide the major explanation for terrestrial ecosystems becoming a carbon source in our analysis.

Since pre-industrial times, LULCC has contributed 180 ± 80 GtC or about one-third of total anthropogenic CO₂ emissions, to the atmosphere (Ciais et al., 2013). Biomass loss in conjunction with tropical deforestation is an important source, but is compensated in part by a sink due to forest regeneration on abandoned cropland, e.g. in conjunction with agricultural intensification in mid-latitude countries after World War II (Shevliakova et al., 2009). If LULCC effects on biosphere carbon balance are disregarded, a residual carbon sink averaging 3.0 ± 0.8 GtC yr⁻¹ for 2005-2014 (Le Quéré et al., 2015) reduces the increase in atmospheric greenhouse gas concentrations due to anthropogenic emissions by around one quarter. Some 60% of this biospheric sink has been attributed to CO₂ fertilization (Schimel et al., 2015), while most of the remainder may be explained by a temperature-driven increase in growing season length in higher latitudes, enhancing vegetation productivity and creating a temporary sink for carbon in the stems of growing trees (Ahlström et al. 2012). For the future, our simulations suggest that for scenarios with wide-spread cropland expansion and slow agricultural intensification (SSP3 “A rocky road”) biomass loss could turn the terrestrial biosphere once again into a carbon source. LULCC has been previously shown to influence the carbon balance simulated by LPJ-GUESS, resulting in a general increase in carbon flux to the atmosphere under cropland expansion (Pugh et al., 2015). In all scenarios except SSP3 the residual carbon sink outweighs LULCC-induced carbon loss and the terrestrial biosphere sequesters 1.1 ± 0.4 GtC yr⁻¹ for 2000-2100 (or 1.9 ± 0.3 GtC yr⁻¹ for 2000-2100 disregarding LULCC). If second generation bioenergy feedstocks were to be explicitly included in the IAM framework, the impact of cropland expansion on the terrestrial carbon balance could be expected to be partially mitigated by carbon-sequestering second feedstock crops, such as switchgrass and woody biomass. An earlier scenario study (based on the earlier, SRES scenario framework) suggested an average net sink of 2-6 GtC yr⁻¹ for 1990-2100 but in contrast to our scenarios, three of the four underlying scenarios assumed a decrease in cropland areas (Levy et al., 2004). More recent estimates for the period 2000-2009 suggested a terrestrial carbon sink of 1.1 ± 0.1 GtC yr⁻¹ (Houghton et al., 2012), which is in the same range as our results for the 2000-2100 period.

The introduction of a global carbon tax as a mitigation strategy paired with the socio-economic characteristics of the SSPs results in varying reductions in atmospheric carbon concentrations in the range spanned by RCP2.6 and RCP6.0. Scenarios with low challenges for mitigation (SSP1 “Taking the green road”), especially when combined with high challenges for adaptation (SSP4 “A road divided”) achieve mitigation pathways that are comparable to the stringent mitigation scenario RCP2.6. However, as the imposed carbon tax only applies for fossil fuels, indirect emissions of land-use change caused by increased bioenergy production in the mitigation scenarios are not considered in these emission reductions. For SSP4 “A road divided”, the terrestrial biosphere becomes a source of carbon in the second half of the 21st century and makes it unlikely that SSP4 “A road divided” truly achieves a concentration pathway comparable to RCP2.6. By contrast, if socio-economic conditions – such as environmentally-conscious life-style choices (low-meat diet) paired with low population increase and strong technological growth – enable the reduction of cropland needed for food production, bioenergy from
energy crops can be produced on the abandoned food-cropland and the biosphere as a whole acts as a sink, as for SSP1 “Taking the green road”. This supports previous studies (Erb et al., 2012; Haberl et al., 2011; Kraxner et al., 2013) that point out that only under specific conditions is bioenergy production sustainable and can contribute to mitigation of climate change.

In context with the mitigation strategies it is remarkable that the introduction of only 10% of the optimal carbon tax leads to significant energy, and thus atmospheric carbon concentration, reductions (e.g. SSP3 “A rocky road”, 35% energy reduction and 26% atmospheric carbon concentration reduction compared to reference scenario in 2100). Thus, if high damages are expected (as in SSP3 “A rocky road”) even the introduction of a carbon tax that is far from optimal is a surprisingly effective strategy to mitigate climate change. However, this is under the assumption that the global carbon tax is introduced immediately and no further delays in climate change mitigation occur. Due to inertia in the climate system, the early reduction of GHG emissions is crucial for the long-term effectiveness of any mitigation strategy (Luderer et al., 2013), but this is a very large challenge for the global community. Thus, especially for scenarios with high challenges for mitigation, the reductions in atmospheric carbon due to reduced fossil fuel consumption suggested by our study are on the optimistic side of available estimates. In comparison, the SPAs that accompany the SSP marker scenarios assume specifically different lengths of transition phases until full global climate cooperation is reached (and transition towards a globally uniform carbon price thereafter), where the most ambitious SPA assumes complete transition by 2020 and is only used for SSPs with low challenges for mitigation (Riahi et al., 2015). A second key assumption in the SPAs concerns the extent of land-based mitigation. For examples, for SSPs with high affluence and high equality (SSP1 “Taking the green road” and SSP5 “Taking the highway”) it is assumed that all land use emissions are taxed with the same level of carbon prices as in the energy sector (Riahi et al., 2015). In our study, the mitigation scenario for SSP5 “Taking the highway” achieves a concentration pathway just below RCP6. To reach a more stringent RCP, such as RCP2.6, land-based mitigation options would need to be considered, such as afforestation projects or carbon capture and storage (see Sect. 4.3 for further discussion). Excluding emissions from land-use in mitigation strategies has previously been observed to lead to large scale land-use change (Wise et al., 2009), as simulated here for SSP2 “Middle of the road” and SSP4 “A road divided”. Further, only taxing fossil fuels leads to unintended outcomes, such as the higher total energy consumption in the mitigation scenario for SSP1 “Taking the green road” compared to the reference scenario for SSP1.

4.2 Uncertainties in the IAM framework and input data

The presented scenario outcomes should be treated as illustrative, as a wide range of outcomes can arise - due to uncertainties in interpretations and quantification of scenario assumptions (Engström et al., 2016a). For example, the uncertainty range for one scenario of cropland change was 1330-1750 Mha by 2100 from 1500 Mha in 2000 (1SD, Engström et al., 2016a). Differences in model structure can likewise cause large spread in results. For example, using one scenario, but 10 different models, Schmitz et al. (2014) projected cropland changes ranging from 1400-2000 Mha by 2050 (relative to a baseline of 1500 Mha in 2000), depending on the model chosen (despite harmonized input data). Differences were related to diverse
model assumptions as to land availability, costs for land conversion and endogenous yield responses to technological change (Schmitz et al., 2014). Similarly, the future fate of the net biospheric sink for carbon is highly uncertain, with biospheric models projecting divergent trajectories in net carbon balance depending on the increase in atmospheric CO₂ associated with a given emissions scenario (e.g. RCP), the climate patterns and trends projected by different GCMs in response to the emissions, differences in ecosystem response simulated by different biosphere models, and whether or not biogeochemical and biophysical biosphere-atmosphere feedbacks are taken into account (Ahlström et al., 2012; Boysen et al., 2014; Cramer et al., 2001; Friedlingstein et al., 2014; Sitch et al., 2008). The IPSL climate model chosen to provide climatic forcing for the ecosystem model simulations in our study induces carbon cycle changes in the middle of the range of an ensemble forced by multiple GCMs (Ahlström et al., 2012, Fig. A 23 in Appendix A.8). Another example of the importance of model structure is the simulated cropland change for SSP3 “A rocky road” of 3950 Mha in reference scenario, compared to an earlier quantification of SSP3 “A rocky road” with a mean of 2280 Mha with identical parameter settings, but an earlier version of the land-use model used here (Engström et al., 2016a). The structural changes in the updated model version are related to the intensification of the livestock sectors, the trade mechanism, and bioenergy production. Previously, the trade mechanism allowed substantial underproduction, which was assumed to be avoided in the updated model version. Thus, the increased demand (11% higher cereal demand due to allowed intensification of the livestock sector and 15.2 EJ bioenergy from crops in 2100 in SSP3 “A rocky road”), paired with the fulfilment of demand, leads to the very high cropland projections for SSP3 “A rocky road”. The cropland expansion in SSP3 is further driven by very low global average yield increase (3.2 ton ha⁻¹ in 2100 and 3.0 ton ha⁻¹ in 2000, compared to 5.2 ton ha⁻¹ in 2100 for SSP5 “Taking the highway”), which is partly also caused by the damage to GWP and thus reduced investments in agricultural technologies.

Additionally to uncertainty arising from model structure, different interpretations of scenarios as well as the translation of qualitative scenario information into quantitative scenario parameterizations contribute to uncertainties of scenario outcomes. For the land-use model used here, the effect of uncertainties in input parameters was shown to produce scenario outcomes with uncertainty ranges (2 × SD) of up to 27% of the scenario mean (Engström et al., 2016a). For the outcome of the climate-economy model uncertainties arise especially due to parameter interdependencies of substitution elasticity with increase in growth rates for fossil fuels and clean energy. Slightly different parameter combinations can lead to very different outcomes. Other parameters, such as the discount rate, were not varied here, but likewise have the potential to change model outcomes (Golosov et al., 2014).

However, the relative similarity of our results to the preliminary SSP quantifications (Riahi et al., 2017; SSP-Database, 2015) gives us confidence that our projections are plausible both in the direction and magnitude of change and can serve as examples for the quantification of the SSPs based on a coherent logic.

4.3 Limitation of the study and further research

One limitation of the presented study already alluded to is the restriction of the mitigation strategies to the energy sector. It would be a valuable addition to the modelling framework to include other land based mitigation strategies, e.g. avoided...
Deforestation and afforestation, as well as demand-side mitigation strategies (meat-low diets, reduction of food waste) which have been previously shown to have a great mitigation potential (Smith et al., 2013). For the current study, bioenergy production is limited to first-generation bioenergy crops. In future work, it would be desirable to introduce other crops, second-generation bioenergy feedstocks that are shown to have greater mitigation potential, such as C4 grasses and switch-grass (Albanito et al., 2016). Additionally, the information flow within the IAM framework could be improved. One such improvement would be to inform the climate-economy model about land-use based emissions due to bioenergy production derived from the ecosystem model. The assumption that clean energy (of which bioenergy is one part) is free from emissions should then be revised or bioenergy modelled as a separate energy source. Further research could also improve the treatment of the uncertainties outlined above. A systematic sensitivity study of the climate-economy model paired with a sensitivity study performed earlier for the land-use model (Engström et al., 2016a) would give better insights into the impact of energy mitigation strategies on consumption, yield and cropland. Also, the impact of cropland changes and mitigation-derived reduced climate change on the terrestrial carbon balance could be quantified with an ensemble of GCMs to account for the uncertainties in climate forcing arising from structural differences among GCMs.

The carbon cycle simulations were performed with dynamically evolving climate and land cover inputs only, while cropland management was kept at the 2006 level. This could affect the results, but enhanced productivity due to fertilisation and irrigation would, to some degree, be balanced by an increase in soil decomposition, so the resultant uncertainty in terms of biosphere carbon balance may be minor in relation to other uncertainties.

5 Conclusions

Our results suggest that the indirect impacts of climate mitigation strategies on global cropland are small in comparison to impacts due to the spread of bioenergy production and other sources of uncertainties, such as model structure and uncertainties in parameterizations. We found that different drivers, such as food production vs. bioenergy production, can lead to contrasting land-use change patterns, as observed here for SSP1 “Taking the green road” and SSP5 “Taking the highway”. Further, without substantial increases in global average crop yields, feeding the global population of 12.1 billion in 2100 assumed under SSP3 “A rocky road”, additionally to producing bioenergy, will cause serious deforestation and transforms the global terrestrial carbon pool to a sink of carbon emissions. Our study thus underlines previous assertions that bioenergy production from energy crops is only a sustainable mitigation strategy if other socio-economic factors, such as population growth, technological change and lifestyle choices, free up existing cropland areas for allocation to bioenergy production.
Acknowledgments

We acknowledge funding from the Formas Strong Research Environment grant “Land use today and tomorrow” (LUsTT; dnr: 211-2009-1682) and the Swedish Research Programme for Climate, Impacts and Adaptation (SWECIA) funded by the Foundation for Strategic Environmental Research (Mistra). Peter Alexander is thanked for supply of initial values of bioenergy production, calculated from FAOSTAT (2015). This study is a contribution to the Strategic Research Area Biodiversity and Ecosystem Services in a Changing Climate (BECC).

References

Appendix

A1. PLUM development

In the earlier published version of the land use model (Engström et al, 2016a) it was assumed that the feed ratio would be constant at year 2000 levels, resulting in potential underestimation of the feed demand for scenarios where meat and milk consumption increase strongly, given the assumption that with increased consumption of animal products the production intensifies, leading to a higher demand for cereal feed. In the PLUM version used here it is assumed that feed ratio increases proportionally to the increase in consumption of animal production (half the growth), but maximal to a scenario-specific feed ratio maximum (feedRatioCap). Country level data of the feed ratio and per capita meat consumption from the year 2000 (FAOSTAT, 2016), show that only very few countries have feed ratios that exceed 0.4 (independent from per capita meat consumption). For countries with feed ratios of 0.4 or lower the data suggest a weak correlation ($R^2=0.14$) with per capita meat consumption. As this relationship is quite weak, we made a conservative assumption and chose values of 0.1, 0.2, 0.1, 0.2 and 0.3 for the feedRatioCap scenario parameter for the SSP1-5 respectively.

The estimates of potential arable land were updated using the areas classified as moderate to very high suitability for high input level rain-fed cereals (Suitability and Potential Yield) by the Agro-ecological Zones Data Portal (FAO/IIASA, 2011), compared to the previous PLUM version (Engström et al, 2016a).

A2. Downscaling GWP

The damage to GWP was distributed among countries based on their share of Gross Domestic Product (GDP) on GWP. In this case the burden of climate-change induced damage to GWP is divided equally. However, to ensure consistency with the social equity assumption in the scenarios, two alternative approaches were implemented. First, for scenarios with high social equity we assumed that high income countries (HICs) would pay a larger share, i.e. 80%, of the damage, while 20% would be paid by middle income countries (MICs) and none by low income countries (LICs). Second and vice versa, in scenarios with limited social equity low income countries would need to pay 50% of costs, middle income 40% and high income only 10% of costs. The reasoning in the second alternative is that low income countries are the most vulnerable to the impacts of climate change, but would not receive much support by high income countries to deal with the consequences of climate change. Categorization of countries into high, middle and low income countries is based on the baseline year 2000 and countries in these income groups contribute with 63%, 29% and 8% respectively to GWP in 2000 (Table A. 1, Baseline).
Table A. 1. Percentages of GWP of high, medium and low income countries for reference scenarios without downscaled damage (woD) and with downscaled damage (wD) for baseline year 2000 and in 2100.

<table>
<thead>
<tr>
<th>Scenario (equity)</th>
<th>HIC woD</th>
<th>HIC wD</th>
<th>MIC woD</th>
<th>MIC wD</th>
<th>LIC woD</th>
<th>LIC wD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>63</td>
<td>63</td>
<td>29</td>
<td>29</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>SSP1 (high)</td>
<td>23</td>
<td>21</td>
<td>35</td>
<td>36</td>
<td>41</td>
<td>43</td>
</tr>
<tr>
<td>SSP2 (medium)</td>
<td>22</td>
<td>22</td>
<td>38</td>
<td>38</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>SSP3 (low)</td>
<td>20</td>
<td>21</td>
<td>45</td>
<td>46</td>
<td>35</td>
<td>33</td>
</tr>
<tr>
<td>SSP4 (medium)</td>
<td>33</td>
<td>33</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>SSP5 (high)</td>
<td>30</td>
<td>26</td>
<td>32</td>
<td>33</td>
<td>38</td>
<td>41</td>
</tr>
</tbody>
</table>

Throughout the 21st century for all scenarios the share of HICs decreases and shares of MIC and LIC countries increases (Table A. 1). Our assumptions for the distribution of damage reinforce this pattern for scenarios with high equity, while the pattern is weakened in scenarios with low equity, see Table A. 1.

A3. Clean energy to bioenergy

Clean energy projections (nuclear and renewable energies) from the climate-economy model were disaggregated to receive bioenergy projections by a) converting energy from climate-economy model from Gtoe into EJ, multiply with 41.868 (1 Gtoe = 41.868 EJ); b) calculating nuclear energy by multiplying the total energy from the climate-economy model (oil, coal, clean energy) with the share of nuclear energy from the WEO scenarios (see Table A. 2); and c) calculating bioenergy by subtracting nuclear energy from clean energy (= total renewable energies) and multiplying with the share of bioenergy on total renewable energies (bioenergy and other renewable energies).

Table A. 2. Shares of energy sources on total primary energy demand in 2010 and in 2035 for the WEO scenarios (OECD/IEA, 2012).

<table>
<thead>
<tr>
<th>Share on primary energy (%)</th>
<th>2010 current policy</th>
<th>new policy</th>
<th>450ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil fuels</td>
<td>81</td>
<td>80</td>
<td>76</td>
</tr>
<tr>
<td>Nuclear energy</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Bioenergy</td>
<td>10</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>Other renewable energies</td>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
A4. Bioenergy in PLUM, technical documentation

The following steps were implemented to include bioenergy from energy crops \((BE_c)\) in PLUM:

The bioenergy from the climate–economy model \((BE_t\text{ in EJ})\) is used as input to PLUM (after interpolating to get annual values, assuming a starting value of 45 EJ in 2000, first value of climate–economy model is in 2010 and varies around 50-60 EJ). The share of bioenergy that is produced from agricultural energy crops \((worldBEc_t\text{ in EJ})\) is calculated with (Eq. A1),

where \(shareBEc_t\) (unitless) is the share of bioenergy from energy crops on total bioenergy, which was 3% in 2008 (OECD/IEA, 2012). The remaining bioenergy from the climate–economy model is produced using other feedstock: 67% of fuel wood, 20% of forest residues, 4% of agricultural by-products, 3% of animal by-products and 3% of waste in 2008 (OECD/IEA, 2012). Additionally the scenario parameter \(shareBEc_{13}\) accounts for that this share might increase in the future, if for example traditional bioenergy from wood fuel is replaced with modern bioenergy from energy crops. Estimates are that up to 25-30% of total bioenergy could be produced from energy crops by 2050, and the highest value for \(shareBEc_{13}\) is 30%, in PLUM achieved by 2100 (time()=0-100, for the years 2000-2100). In \(shareBEcr_{13}\) “13” indicates that this is scenario parameter number 13.

\[
worldBEc_t = BE_t * shareBEc_t + BE_t \times \left(\frac{shareBEc_t}{100} - shareBEc_t\right) \times \frac{time()}{100} \times \frac{r\left(\frac{shareBEc_{13}}{100} - shareBEc_t\right) \times \text{time}()}{100} \tag{Eq. A1}
\]

\(worldBEc_t\) is the net primary bioenergy from energy crops and does include energy that is lost during the conversion of biomass to bioenergy. The energy content of the biomass produced for bioenergy from energy crops in 2000 was 2.09 EJ (calculated using crop specific energy contents), while primary energy supply was estimated to 1.35 EJ. This implies an initial conversion efficiency of \(65\% = \frac{1.35EJ}{2.09EJ} \times 100\%\), \(\text{conversionEff}_t\). It is assumed that the conversion efficiency \((\text{conversionEff}_t)\) can be improved over time (max \(\frac{1.35EJ}{2.09EJ} \times 100\% = 65\%\) by 2100) and the scenario parameter \(\text{efficiencyBEc}_{EJ14}\) is introduced (0-50\% increases), see Eq. 2.

\[
\text{conversionEff}_t = \text{conversionEff}_t + \left(\frac{\text{efficiencyBEc}_{EJ14}}{100} \times \text{time}()\right) \tag{Eq. 2}
\]

The global energy content in biomass from energy crops \((worldBEc_{gt}\text{, EJ})\) is then calculated as in Eq. 3.

\[
worldBEc_{gt} = worldBEc_t * \text{conversionEff}_t \times \frac{1}{\text{conversionEff}_t} \tag{Eq. 3}
\]

\(worldBEc_{gt}\) needs to be distributed to the 160 countries \((n=1-160)\) in PLUM, see Eq. 4. This is done with help of \(cF_{BEtoa_{total}}\) (unitless), the per country fraction of bioenergy on total bioenergy production, as well as \(yieldBEc_{n}\), the country specific yield of bioenergy \((yieldBEc_{n}\text{, EJ/Mha})\). FAOSTAT commodity balance sheets, “other uses” for crops cereals total, vegetable oils, and sugar crops (Mt) and production and production area were used to derive initial bioenergy.
area and yields (Alexander et al, 2015; FAOSTAT, 2015). The category “other uses” covers bioenergy, as well as materials and stimulants. For the selected crops it was assumed that all of “other uses” is used for bioenergy and only commodities that are not agricultural by-products were selected to insure consistency with the WEO definition of energy crops “Energy crops – those grown specifically for energy purposes, including sugar and starch feedstocks for ethanol (corn, sugarcane and sugar beet), vegetable-oil feedstocks for biodiesel (rapeseed, soybean and oil palm fruit) and lignocellulosic material (switchgrass, poplar and miscanthus)” (OECD/IEA, 2012). Lignocellulosic material was excluded here.

The resulting per country bioenergy cropland demand \(\text{croplandBEcrD}_{t,n} \) has the unit 1000 ha \((\text{EJ}/\text{EJ} \times \text{Mha}) \times 10^3 = \text{1000 ha}) \).

\[
\text{croplandBEcrD}_{t,n} = \frac{\text{worldBEcrD}_{t,n} \times \text{yieldBEcrD}_{t,n} \times \text{yieldGrowth}_{t,n}}{\text{worldBEcrD}_{t,n} \times \text{yieldBEcrD}_{t,n} \times \text{yieldGrowth}_{t,n}} \times 10^3 \quad \text{(Eq. 4)}
\]

In equation Eq. 4 it assumed that the yield of bioenergy changes proportional to the change (mostly growth) in yield, \(\text{yieldGrowth}_{t,n} \) (unitless) as simulated for cereal yield (\(cYield_{t,n} \) and \(cYield_{i,n} \)), see Eq. 5.

\[
\text{yieldGrowth}_{t,n} = 1 + \frac{\text{cYield}_{t,n} - \text{cYield}_{i,n}}{\text{cYield}_{i,n}} \quad \text{(Eq. 5)}
\]

The change in cropland demand for bioenergy production per country is calculated in Eq. 6.

\[
\Delta \text{croplandBEcrD}_{t,n} = \text{croplandBEcrD}_{t,n} - \text{croplandBEcrD}_{t-1,n} + \text{extraCroplandBEcrD}_{t,n} \quad \text{(Eq. 6)}
\]

There is an extra demand for cropland for bioenergy (\(\text{extraCroplandBEcrD}_{t,n} \), in 1000 ha), due to the fact that some countries approach their maximum of arable land and cannot produce the bioenergy demanded from them. This extra demand is divided among countries that have more than three times the minimum residual naturally vegetated potential cropland available and have cropland for bioenergy in the first simulation year (\(\text{resNV}_L \), in 1000 ha), see Eq. 7.

\[
\text{extraCroplandBEcrD}_{t,n} = \frac{\text{worldCroplandBEcrD}_t - \text{worldCroplandBEcrD}_{t}}{\text{worldResNV}_L} \times \text{resNV}_L \times 1000 \quad \text{(Eq. 7)}
\]

Cropland area for bioenergy production (\(\text{croplandBEcrD}_{t,n} \) in 1000 ha) is initialized with \(\text{croplandBEcrD}_{t,n} \) (in 1000 ha) calculated by using the FAOSTAT data referred to above. Changes in cropland for bioenergy are taken/given from/to forest and grassland, see Eq. 8.

\[
\text{croplandBEcrD}_{t,n} = \text{croplandBEcrD}_{t,n} + \text{forestCroplBEcrD}_{t,n} + \text{grasslandCroplBEcrD}_{t,n} \quad \text{(Eq. 8)}
\]

For forest\(\text{CroplBEcrD}_{t,n} \) (1000 ha) and grassland\(\text{CroplBEcrD}_{t,n} \) (1000 ha) rules similar as for the conversion of forest and grassland to cropland are applied as previously described for PLUM development in Engström et al., (2016). These rules describe that a scenario dependent share of total land is always reserved for natural vegetation (defined in \(x_{t,n} \) and \(y_{t,n} \)), see Eq. 9 and Eq. 10. For land conversion for bioenergy the share of land reserve for natural vegetation is assumed to be double the amount reserved under conversion process for food production, in order to prioritize food production.

\[
\text{forestCroplBEcrD}_{t,n} = \Delta \text{croplandBEcrD}_{t,n} D \times x_{t,n} \times y_{t,n} \quad \text{(Eq. 9)}
\]
Cereal production for “other uses” is otherwise included through the overproduction demand in PLUM \((\text{overPro}, \text{overPro}_i = 30\%\) initial value in 2000) and this initial overproduction demand needs to be reduced by the production of cereals for “other uses” which is now included explicitly for bioenergy production. To adjust the initial overproduction demand the share of cereal production for bioenergy \((\text{proShareBE}_i,\text{unitless})\) on the \(\text{worldDemand}_i\) (Mt) in 2000 is calculated, see Eq. 11;

\[
\text{proShareBE}_i = \frac{\sum_{i=0}^{\text{worldDemand}_i} \text{cProBE}_i}{\text{worldDemand}_i} \quad \text{(Eq. 11)}
\]

where the cereal production for bioenergy \(\text{cProBE}_i\) (in Mt) is calculated taken from FAOSTAT data for the year 2000.

Finally, \(\text{overPro}\) is adjusted, see Eq. 12, where \(\text{overProd}_i\) is a scenario parameter that adjust overproduction demand over time (Engström et al., 2016).

\[
\text{overPro} = (\text{overPro}_i - \text{proShareBE}_i) + (\text{overPro}_i - \text{proShareBE}_i) * \text{overProd}_i * \text{time} \quad \text{(Eq. 12)}
\]

A5. SSP-RCP matrices

To derive the values for the SSP-RCP matrices we calculated for each scenario (SSPr1-5, SSPm1-5) the distance from the simulated changes in atmospheric carbon pool (Fig. 4, panel a) to all RCPs in 2100 (as the RCPs are defined by their targets in 2100). The normalised distance indicates how likely a given SSP will result in a given RCP, i.e., the smaller the distance, the higher the probability that the SSP will result in the RCP modelled by the climate-economy model. The inverse of the distances were normalised, resulting in the probabilities in Table A.3.

For the weighing of LPJ-GUESS NECB, only RCPs with probabilities above 0.1, or if all four RCPs have probabilities above 0.1 then the three highest (as in SSP5 reference), were included.

Table A.3. Matrices for reference (r) and mitigation (m) scenarios with probabilities that a given SSP results in a given RCP.

<table>
<thead>
<tr>
<th></th>
<th>RCP 2.6</th>
<th>RCP 4.5</th>
<th>RCP 6</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP1</td>
<td>0.018</td>
<td>0.760</td>
<td>0.961</td>
<td>0.148</td>
</tr>
<tr>
<td>SSP2</td>
<td>0.092</td>
<td>0.482</td>
<td>0.155</td>
<td>0.348</td>
</tr>
<tr>
<td>SSP3</td>
<td>0.035</td>
<td>0.248</td>
<td>0.065</td>
<td>0.582</td>
</tr>
<tr>
<td>SSP4</td>
<td>0.024</td>
<td>0.918</td>
<td>0.047</td>
<td>0.047</td>
</tr>
<tr>
<td>SSP5</td>
<td>0.112</td>
<td>0.074</td>
<td>0.156</td>
<td>0.282</td>
</tr>
</tbody>
</table>
A6. Rationale for the parameter settings of the climate–economy model for reference and mitigation scenarios

In reference SSP1 energy technologies are directed away from fossil fuels due to a low growth rate in the efficiency of coal extraction (0.5% annually in the time period 2010-2100 compared to 2% baseline). Simultaneously the efficiency of renewable energy production is allowed to grow at 2.5% annually over the time period 2010-2100. Energy efficiency is regarded as an integral part of the low carbon and low energy intense future of SSP1. Energy efficiency is stimulated by relatively high energy prices (implemented via a lower substitution elasticity of 0.80). The societies are well prepared for possible effects of climate change (low damage factor of 5×10^{-5}). Due to the overall importance of sustainable and holistic solutions, the challenge to mitigation is low. Mitigation strategies in the SSP1 mitigation scenario include an optimal carbon tax, as well as measures to reduce the growth rate of the efficiency of coal extraction to 0%. Measures to facilitate green energy substitution are implemented increasing the substitution elasticity to 0.95.

In reference SSP2 the continued reliance on fossil fuel keeps the growth of extraction efficiency for coal at a moderate pace (2% annually). Some investments in renewable energy technologies leads to growth of renewable energy efficiency at 1.5% annually. In SSP2 reference there are no significant improvements in energy infrastructure or energy efficiency projects, thus substitution elasticity remains at 0.85 throughout the period 2010-2100. Medium challenges to adaptation are parameterised with a damage factor of 10×10^{-5}. With a moderate challenge to mitigation, mitigation strategies for SSP2 include an increase in growth of efficiency of renewable energies to 2% annually, while the growth in extraction efficiency of remains unchanged (2.0% annually). Due to the mitigation strategies there are slight improvements in infrastructures for renewables energies (substitution elasticity 1.05), as well as global carbon tax that covers 30% of the social costs of carbon.

In SSP3 reference scenario slow technological change mostly directed towards domestic energy sources leads to a continued, albeit slower growth of efficiency of coal extraction (1.2% annually) and a moderate growth of renewable energy production efficiency (1.0% annually), as some regions growingly rely on domestically available renewable energy sources. Energy and carbon intensities remain high and the substitutability of different energy sources is at a medium level. The mitigation challenges for SSP3 are very high, but only limited mitigation efforts are undertaken. The growth rate of renewable energy production efficiency to 1.2 % annually, while the substitution elasticity remains at 09.95. Additionally in the SSP3 mitigation scenario a very moderate (10% of optimal) global carbon tax is introduced. However, SSP3 also has a high challenge for adaptation and the damage factor is high 15×10^{-5}, leading to high expected damages and additional incentives to decrease energy use under the mitigation scenario.

In reference SSP4, the substitution elasticity is slightly below the reference and the growth rates of efficiency coal and renewable energy are moderate, both at 1.5% annually. Challenges to mitigation are high, characterized by a high damage factor (15×10^{-5}), resulting in large anticipated damage from fossil fuel burning and thus overall lower fossil fuel use in the mitigation scenario. In the SSP4 mitigation scenario additional efforts are made to increase production of renewable energies, both through increasing the production efficiency growth of renewable energy (to 2% annually), reducing the
growth rate of coal extraction to 1% annually and improving energy infrastructure investments (a substitution elasticity of 1.05). As the challenges to mitigation are low, an optimal global carbon tax is implemented under the SSP4 mitigation scenario.

In reference SSP5 all energy development is focused on fossil fuels, leading to very high growth rates for extraction efficiency of coal, 2.2% annually and growth in renewable energy production efficiency is neglected (0%). The price is a massive use of fossil fuel at cheap prices and low energy efficiency. Fossil fuels are predominantly used for all of energy production facilitated by a high substitution elasticity of 1.05. However, as the increased level of development lowers the challenge to adaptation, the damage of expected climate change is buffered by a low damage factor (5×10^{-5}). Nevertheless, challenges to mitigation are high but the mitigation strategies for SSP5 include only a very moderate global carbon tax (10% of the optimal), a higher substitution elasticity (1.2) and a slight decrease in growth of coal extraction efficiency (2%) compared to the SSP5 reference scenario.

A7. Details of cropland downscaling

Country level changes in land cover were downscaled to 0.5 × 0.5° grid cells using a suitability index ($S_{i,t}$) where the suitability for cropland in grid cell i was calculated based on the proximity of cropland in surrounding grid cells and the potential crop productivity in the target grid cell. If the projected country level change in cropland cover was positive ($\Delta LC_i > 0$), the following algorithm was used:

\[
S_{i,t} = \sum_{n=1}^{N} \left(\frac{1}{d^2_{n,i}} \right)^\alpha + \left(\frac{1}{d^2_{c,i}} \right)^\alpha p^\beta_{i,t-1}
\]

and for a decrease ($LC_i < 0$):

\[
S_{i,t} = \sum_{n=1}^{N} \left(\frac{1 - LC_{n,i,t-1}}{d^2_{n,i}} \right)^\alpha + \left(\frac{1 - LC_{c,i,t-1}}{d^2_{c,i}} \right)^\alpha p^\beta_{i,t-1}
\]
where:

- \(N \) is the number of neighbors of grid cell \(i \) (8 except in coastal areas);
- \(d_n \) is the distance to grid cell \(n \);
- \(LC \) is cropland cover;
- \(\alpha \) is the scalar of the distance factor, could differ between increasing or decreasing \(LC \);
- \(\beta \) is the scalar of the production factor, could differ between increasing or decreasing \(LC \);
- \(\gamma \) is a distance weighting factor;
- \(P \) is potential crop productivity, simulated by the ecosystem model.

In this study, values used were \(\alpha: 1.0/1.0 \) (increase/decrease), \(\beta: 2.0/1.0 \) (increase/decrease), \(\gamma: 2.0 \).

The resultant suitability index was then divided by the number of grid cells in the target country to yield the grid cell share of the country-level land cover change:

\[
\Delta LC_{i,t} = \frac{\sum_{n=1}^{H} \Delta LC_{i,t} LC_{i,t}}{\sum_{n=1}^{H} LC_{i,t}} = \frac{S_i}{\sum_{n=1}^{H} S_n} \Delta LC_{i,t}
\]

where:

- \(H \) is the total number of cells in a country.

A8. Additional figures

![Graph showing global terrestrial carbon (GtC) over time for different scenarios.](image-url)
Figure A 1: Global terrestrial biosphere carbon (GtC) simulated with constant year 2000 land cover forced by climate change fields from the IPSL GCM. Scenarios with large shares of RCP8.5 and RCP6.0 (SSP2r, SSP3r, SSP4r, SSP5r and SSP5m) achieve highest global terrestrial carbon in 2100, scenario mainly driven by mainly RCP2.6 (SSP1m and SSP4) result in the lowest global terrestrial carbon, while scenarios mainly driven by RCP4.5 (SSP1r, SSP2m and SSP3m) place in between.

Figure A 2: Comparison between CO₂ emissions of the reference scenarios from the climate-economy model used in this paper (full lines) and the total CO₂ emission scenarios presented in Riahi et al. (2017) and available from SSP-Database (2015; dashed lines).
Figure A 3: Global terrestrial biosphere carbon (GtC) simulated with climate forcing fields from four GCMs (MIROC (Watanabe et al. 2010), MRI (Yukimoto et al. 2012), IPSL (Dufresne et al., 2013) and GFDL (Donner et al., 2011) for medium LULCC (SSP2m) and RCP4.5 driven climate change. Uncertainties due to different process representations in the four GCMs arrive at differences across the GCMs in 2100 which are similar to the total simulated change for one GCM (e.g. difference MIROC-GFDL is around 150 GtC in 2100, while total simulated change of GFDL is around 100 GtC or 200 for MIROC). The initial dip in GFDL terrestrial carbon is mainly caused by Amazon forest dieback.
P. Kyle (Referee)
pkyle@pnnl.gov
Received and published: 31 October 2016

—Summary—
The authors have pulled together a lot of material to address the research questions, which are quite complex and required the development of several new modeling tools that haven’t had any prior publications. I would want to see changes to the modeling processes prior to recommending publication, and some more references to the literature on applying climate damages in an IA modeling context.

Response: Thank you for the thorough review of our study which has led to revisions that will surely help to improve the manuscript. The modelling tools we have pulled together are all previously published (Climate economy model (Golosov et al., 2014), PLUM (Engström et al., 2016a; Engström et al., 2016b) and LPJ-GUESS (Lindeskog et al., 2013; Smith, 2001; Smith et al., 2014)), while the IAM framework linking them together is new (clarified in the revised manuscript, p 1, 2 and 5). We believe that our modelling approach is defendable and holds value as an alternative method, compared with the IAM-generated “official” SSP projections, for interpreting the SSP scenarios and relating them to climate, emissions, ecosystem impact, land use and energy sector development in a coherent way. As noted below, there is no single “correct” way to interpret the SSP narratives, which describe different aspects of the possible future world in a qualitative and relative (to present, and to alternative futures) way. Thus there is value in the availability of multiple interpretation methodologies based on different but defendable assumptions and approaches, to stimulate debate and encapsulate uncertainty. Furthermore, our goal is not to make necessarily accurate predictions (given current uncertainty, how could this be judged?) but to investigate the plausible implications of key interactions between biophysical processes and human decision-making under climate change and its impacts.

—Several points—

* My first comment pertains to the energy/economy model used here: I don’t see any value to publishing a new set of SSP-ish scenarios from this very simple model that appears to be parameterized inconsistently with the corresponding publicly available SSP scenarios. The sophistication of the energy/climate model in this study is similar to, or less than, the IA models in the 1980s. This wouldn’t be a problem as long as the simple model were parameterized so as to replicate the results of the larger energy-economy models used to produce the SSPs (in similar fashion to the simple climate models that replicate the results of the GCMs). Most of the parameters that this model takes as exogenous inputs are the product of complicated and generally non-linear dynamics, and instead of just being guessed (e.g., technology efficiency improves at 2%/yr from 2010 to 2100), they should be calculated from those more detailed models’ outputs. Much more effort should be focused on validating that the outputs from the energy/economy and land model here are in fact consistent with the published scenarios. That comparison should be done for all key variables assessed here in order to ensure consistency; the discussion includes mostly anecdotal observations that two of the ten scenarios here have similar cropland quantities and total primary energy demands as two of the scenarios in the SSP database.
Response: The general approach taken in this paper was to represent the global system governing emissions and land use with a parsimonious system. In contrast to other similar work, we used a modern macroeconomic model where the economy is represented as a set of markets where forward-looking agents makes decisions to maximize a well specified individual objective function — in other words, the model has microeconomic foundations. This contrasts to the approach taken in most existing IAMs used for the provision of RCP emission scenarios where either supply and demand are modelled ad-hoc or a welfare function for a representative household is maximized. Following the route we chose has both advantages and disadvantages. A disadvantage also true of state-of-the-art modern macro models is that they are very much less detailed in the description of, e.g., technical characteristics of energy supply. However, there are also advantages that made the macroeconomic community switch to models with microeconomic foundations decades ago. A key advantage is that by explicitly modelling the incentives and constraints of agents in the market, the models are in principle insensitive to the Lucas critique. This essence of this critique is that estimated historic correlations between aggregate variables cannot be trusted to be invariant to policy changes. Therefore, calibrating our model to simply replicate traditional and more detailed models, which is very reasonable in models of nature, is not as straightforward a way forward here. An advantage of modelling markets explicitly, rather than maximizing a welfare function like in RICE/DICE and MERGE, is that market imperfections, suboptimal tax policies as well as uncertainty can be introduced in a straightforward way. Relevant market imperfections to include in the analysis could be market power and asymmetric information. That there are both pros and cons of economic models based on micro-foundations make us argue that our approach is complementary to and motivated in providing a relevant alternative approach to the more standard IAMs.

We are aware of that we in this article are far away from taking full advantage of the potential provided by models with microeconomic foundations. However, using a model that is very familiar to macroeconomists with training after, say the 1990s has the advantage that it can help bring more macroeconomists into climate-economy modelling. Focusing on essential processes describing the system requires assumptions for processes not explicitly modelled, in contrast to more sophisticated IAM frameworks that include the here excluded processes. With the parsimonious approach we aimed at providing an independent set of SSP realisations based on the SSP storylines and harmonized key input data, such as population and economic growth. The aim to provide consistent and independent SSP realisations and focusing of interaction effects is clarified in the introduction (p 2 and 3). The choice of parameter settings in the climate economy model was derived through the interpretation of SSP storylines and are clarified in the method section (p 3, 11 and 14). Deriving growth rates from the SSP quantifications would in our view not be desirable, as this would compromise the independence of the developed scenarios. A comparison of the developed energy scenarios to published energy scenarios (as of winter 2015/2016, e.g. (Bruckner et al., 2014)) was done during the parameterisation. In the revised manuscript we added the comparison of the simulated energy scenarios with the SSP marker scenarios (p 17). In the introduction we clarified that the developed scenarios are not predictions but rather serve to highlight interactions that might be important, e.g. leading to non-obvious outcomes, in the coupled social-biophysical system (p 2).

* I also have a problem with the basic design of the study, but this is really a decision for a journal editor and not a reviewer, and there’s not really anything that could be done to change it. The study uses a detailed crop and vegetation model to represent climate impacts at the 0.5 x 0.5 degree scale, but then uses an extremely simple multiplier on a nation’s GDP (or the world’s GWP) to calculate the climate damages. I am aware that others in this field do that, and so perhaps there is no issue here. But in my opinion, climate impact-related damages simply do not lend themselves well to that sort of simplistic representation. Climate impacts, by their nature, are non-linear with respect to global temperature, variable over time, region-specific, and context-dependent. In the form of droughts and extreme events, they are also relevant at sub-annual time scales, below the resolution of the timesteps being represented in the global energy/economy/land models. To estimate the costs of climate impacts in any region and time period, one would first need to know what the physical climate impacts are; second what the direct damages are; and third what the adaptive capacity of the system is, along with the costs of adaptation. At
this point, the scientific community has produced scenarios of climate at the appropriate temporal and spatial scales, and is currently working on how to model the impacts of the climate on the relevant activities in the economic, energy, and agricultural sectors. This study doesn’t address the complexities of climate impacts in estimating GWP losses; it uses a simple "marginal damage" function that relates economic productivity loss to the CO2 concentration. I know they cited another study that used/developed that function, but in my opinion there is no reason to believe that this relationship has any validity, applied to a future economy that is likely very different from today’s, and with climate impacts that include much more than temperature change. Given the current state of the art in the impacts, adaptation, and vulnerability (IAV) community, I doubt this relationship was demonstrated to hold for a variety of nations with different climate impacts and different economic structures.

Response: Considering the complexity of vegetation-ecosystem processes, even the process-based vegetation model LPJ-GUESS can be considered as parsimonious. Despite intensive research efforts during the last decades the future evolution of the global carbon cycle is still the subject of considerable debate, with different state-of-the-art models yielding contrasting projections both in offline and coupled Earth system simulations (Ahlström et al., 2012; Friedlingstein et al., 2014). In model intercomparison studies, LPJ-GUESS typically exhibits mid-range responses compared to other models (e.g. Ahlström et al., 2012) and emerges as comparatively skillful in reproducing ecosystem patterns and trends compared with independent estimates e.g. from satellites and flux towers (Murray-Tortarolo et al., 2013; Piao et al., 2013). It is one of the few globally benchmarked ecosystem models that accounts explicitly for demographic processes controlling the accumulation of carbon in growing forest stands following agricultural land abandonment – a significant component of the extant land carbon sink, and thus important to represent correctly (Shevliakova et al., 2009).

There is no doubt that there is a very large amount of uncertainty about how climate change will affect the economy. We do not expect the uncertainty about economic effects far into the future and for large climate changes to fade anytime soon. We thus use the much used Nordhaus (2008) aggregate damage function that based on a large number of studies express economic damages as a function of the change in global mean temperature. Golosov et al. (2014) show that this, in combination with a logarithmic relation between atmospheric CO2-concentration and temperature, produces a relation between CO2 concentration and damages with a constant quasi-elasticity. To illustrate the great uncertainty, we provide scenarios, based on different parametric assumptions about future damages and technological development. This can provide a sense of orders of magnitude but should, obviously, not be taken as forecasts. The geographic distribution of damages could be done using more existing information. However, our results are not sensitive to this.

* The authors should specify what the downscaled gross world product (GWP), to the country level, is used for. The method is documented in the text and appendix, but I never saw what subsequent calculations it was used for; it may be used to modify a country’s GDP and therefore energy demand, but I’m not sure. I don’t particularly like the method, as it doesn’t consider the inter-national differences in climate impacts; for instance, temperature increase could be good for economic productivity in some countries (e.g., Sweden) while bad in others (e.g., India). Also it doesn’t consider that climate impacts will affect different sectors of the economy in different fashion (e.g., agriculture vs manufacturing vs services vs household), so that the climate impacts on GDP will be different for countries with different economic structures (all else equal).

Response: In section 2.1, we mentioned that the damage to GWP influences food consumption and yield development, but not energy demand, which is now elaborated in the revised manuscript (p 6). Generally, the use of spatially explicit climate data in the vegetation model and the asymmetric downscaling of damage to GWP in scenarios with high/low social equity capture part of the existing international differences. We do concede that we fail to take into account the heterogeneous...
impact on different sectors, but this was not the focus here. Overall, damage to GWP has a very minor effect on yield and cropland (Figure 6b) and therefore we do not see this as a critical shortcoming of the approach in the current study.

* More documentation of how the climate impacts were applied to the agricultural sectors should be provided. In this sort of vegetation and agro-economic model link-up, many countries typically see unrealistic and positive yield impacts, particularly places with a harsh climate and low yields in the historical years, where small increases in precipitation can lead to large modeled yield increases. In my work with similar data I’ve had the most trouble with the Middle East, North Africa, Russia, and Canada. But to some extent this depends on the mathematical formulations for applying aggregated crop model output to the baseline nation-level yield trajectories.

Response: How crop yield outputs from LPJ-GUESS are fed into the land use model, PLUM, is described in detail in Engström et al. (2016b), and we will add a short summary in the revised manuscript (p 9 and 10). Current modelled yield levels are scaled to the actual yields synthesised by Mueller et al. (2012) and aggregated to country level. This is also true for the potential yields, and the difference between them is taken to be the current yield gap. Future yield levels are climate driven anomalies applied to the baseline levels, then aggregated based on the SSP specific land cover, simulated by PLUM, to country level. It is true that changes in precipitation can lead to increases in simulated yields but in the model this would not influence the relative yield gap, as both are affected arithmetically by the same climate driven yield increase.

* Next, I’ll address a few of the simplifications and representations that struck me as particularly problematic in the modeling exercise; unfortunately, without the raw data inputs and outputs to/from the model, I can really only guess as to the relative importance of each.

1) shareBEcr: this parameter, exogenous in all periods and scenarios, represents the combustible energy content of all ethanol and biodiesel feedstocks divided by total global bioenergy demands. The denominator includes all remaining uses of bioenergy, which the authors note account for some 97% of the base-year bioenergy demands. The basic problem is that these bioenergy commodities (in the denominator) have fundamentally different future demand drivers from ethanol and biodiesel (the numerator), so there isn’t really any way to know a priori how this will evolve over time, in the various narratives of the SSPs. In the current study design, the authors are attempting to set the “shareBEcr” such that the quantity of agricultural crops used as bioenergy feedstocks does not grow by more than 30-50% from its base year value, according to the estimates of a study (Haberl et al. 2010). However, in the model, this is applied as a share constraint rather than a quantity constraint, so the target quantity (from Haberl et al. 2010) appears to be greatly exceeded in some if not all of the scenarios. On the other side, the bioenergy commodities that do grow a lot (up to 450 EJ/yr) are the unspecified ones, which in the study methods are not tied to cropland or the land/carbon models, even though it is stated that this commodity class includes ligno-cellulosic (i.e., “second-generation”) bioenergy sources. These bioenergy crops are a very important component of future land use change in the SSP scenarios, and probably account for the vast majority of the growth of bioenergy here. This is because traditional uses of firewood and charcoal, and industrial recycling of bio-derived byproduct fuels, are simply not energy demands that are likely to scale up in any significant way in response to an emissions mitigation policy. So, by bunding second-generation bioenergy crops with waste and traditional biomass commodities whose production is not tied to land use, the scenarios
are getting up to 450 EJ/yr of bioenergy, almost as high as total global primary energy consumption of all fuels today, without causing land use change or any other consequences relevant for emissions and carbon stocks.

Response: We admit that not explicitly modelling the production of second generation bioenergy feedstock is a shortcoming of our approach, and have added mention of this aspect to the limitation section in the discussion (4.3, p 31). In future work it would be desirable to include a wider range of bioenergy feedstocks. However, generally second generation feed stocks are typically either by-products or crops that contribute to carbon sequestration (e.g. switch grass, woody biomass). Therefore it is likely that the effect of increased bioenergy production on the carbon balance in our study is rather overestimated than underestimated, which is raised in the discussion in the revised manuscript (p 28). Generally, the estimates for the global technical potential of total bioenergy differ very largely in the literature, from e.g. < 300 EJ by 2050 (Erb et al., 2012; Haberl et al., 2011) to > 500 EJ by 2050 (Hoogwijk et al., 2005; Smeets et al., 2007). The lower range of the estimates typically includes food-first approaches and or sustainability constraints. However, given the nature of the different scenarios it is plausible that sustainable bioenergy potential are exceeded and bioenergy production occurs at higher environmental costs.

In the revised manuscript we discuss unintended outcomes, such as a higher total bioenergy production in SSP1 mitigation scenario in light of the importance of a global carbon tax to avoid such outcomes (p 29). Also, due to the potential importance of lignocellulosic crops we assumed a lower contribution of energy crops to total bioenergy of max 15% in 2100 compared to Haberl et al., 2010 (30-50%). The assumed shares of crop-based bioenergy on total bioenergy for the SSPs are 3-9% (Table 4). A quantity share of 3-9% results in up to 11 EJ by 2050 and 47 EJ by 2100 of crop-based bioenergy, which is still below the (sustainable) potential estimated (e.g. 50% of 270 EJ by 2050 according to Harbel et al. 2010).

2) conversionEff: this parameter describes the relationship between the combustible energy content of harvested bioenergy and the biofuels produced, in the form of ethanol and biodiesels. The authors estimate this efficiency at about 65% in the base year, with a maximum value (year 2100, with efficiencyBEcrEJ set to 50%) of 95%. The end-of-century levels are simply not realistic; that would entail conversion processes wherein the vast majority of the combustible energy content of the by-products (dried distillers grains and oil crop feedcakes) are somehow transferred into the fuel. I don’t know what the theoretical limits on that conversion are, but I suspect it’s closer to 65% than 95%.

Response: The documentation of conversionEff is clarified in the revised manuscript (p 40). As intended conversionEff improves as given in Table 4 (max 70% by 2100), which we would like to argue is a conservative approach.

3) A2 and A3: the annual improvement rate in the efficiency of producing coal and carbon-free energy, respectively. It is possible that this description is inaccurate in several ways; I’m hoping that what is intended is the improvement in the whole-economy energy intensity of the use of these fuels, or the ratio of primary (usable) energy to economic output. Improving the energy efficiency of producing these energy commodities (e.g., less fuel-intensive coal mining or farming practices) wouldn’t make much difference to energy consumption at the global level, and in any case these practices are likely to become more energy-intensive over time, not less, due to resource depletion, mechanization of farming, and others. There are also problems if this were interpreted as the efficiency of using energy. An efficiency that grows at 2% per year from 2010 to 2100 ends up 6 times higher than it started, and for the maximum improvement rate used, 2.5%/yr, it ends up nearly 10 times higher. There are no uses of coal in the energy system, at a global level, with thermal efficiency levels low enough to permit this sort of improvement.

And, like many parameters here, I would suggest calculating them from the model
outputs in the publicly available SSP scenarios, and using some simplification from that calculation, rather than arbitrarily guessing. The SSP suggested parameterizations (guidelines) were written for IA models with a much higher level of detail of the physical systems than the tools used here.

Response: In the revised manuscript we clarified the definition of efficiency of producing coal and green energy describes the output of energy services per unit labour used in the respective energy sector (this is distinct from the overall energy efficiency in the economy (GDP per unit of energy) which is endogenously determined and from thermal efficiency which obviously is bounded from above (p 7)). In the US, coal production efficiency (coal produced per hour worked in coal production) increased by 3.2% per year between 1949 and 2011, this is about 1.2% more than general increases in labour productivity. For most decades the growth rate was substantially higher – if we disregard the 70s and the 00s, the average was 6.2% per year. (Source: US Energy Information Administration.) Thus, our assumptions are, broadly speaking, not out of line compared with historical growth rates. However, it is generally difficult and subject to much academic controversy to forecast future productivity growth (see e.g, the discussion between Robert Gordon and Andrew McAfee (Brynjolfsson and McAfee, 2013; Gordon, 2016)). Regarding green energy, it is arguably even more difficult. Thus, rather than settling for one estimate of future growth rates based on historic productivity, we provide a set of scenarios.

4) Yield: the yield growth rates I would also suggest taking from the SSP database, using area-weighted and indexed cereal yields in each region. The current method assigns baseline productivity growth on the basis of the yield gap, from the Mueller et al gridded yield gap study. There are two issues with this approach. For one, as the authors note, the rate at which countries close the yield gaps is tied to “each scenario’s technological growth, economic development and technology transfer.” However, these attributes are more granular than the inputs to the model used, and it isn’t specified how those yield trajectories were developed. Second, convergence with base-year yield gaps is only one component of future agricultural productivity improvements; the distribution itself should also shift upwards due to technological change. In regions with no or little yield gap (e.g., Europe, the USA), yield improvements to 2100 are effectively frozen in this method, which likely isn’t what is intended.

Response: As previously emphasised our intention was to produce independent SSP realisations and therefore we would like to refrain from calculating the yield growth rates from the SSP database. In the revised manuscript we specify the assumptions that lead to the yield trajectories (section 2.4.2, p 14). Admittedly, our approach is conservative insofar as only the effect of climate change on yield growth is included, but not the use of new varieties (clarified in the revised manuscript, p 9). However, in countries with low yield gaps, current yields are close to the theoretical potential of vegetation growth, given current climate conditions.

5) p: the rate at which future welfare is discounted. Part of the problem with the research goals of this study is that the impacts of climate change from emissions today play out over hundreds of years, due to the long lifetime of CO2, not even taking into account issues like sea level rise or thermohaline cycle disruption. How the net present value of damages can be applied to an economy over such a long time span and across generations is a topic without consensus in the modern economic literature. Some review is warranted (e.g., Stern versus Nordhaus). Still, one point with good agreement is that the discount rate is very important for the balance between near-term emissions mitigation and long-term reduction in climate damages. I couldn’t find where the discount rate was stated, but did find a statement that the discount rate was not varied in any sensitivity analysis, so I’d suggest clarifying what is used, stating the justification, and running a couple of sensitivity scenarios.
Response: The discount rate applied to future damages to GWP can be separated in one part that depends on how welfare in the future is valued relative to welfare today. The other part depends on the level of consumption in the future relative to today. A high relative level of future consumption reduces the relative value of a lost unit of future consumption due to lower marginal utility. The first part is often called the subjective discount rate and is purely determined by preferences/value judgements. Golosov et al (2014) show that under reasonable assumptions, the socially optimal carbon tax is independent of the other part of the discount rate, but highly sensitive to the first. In our approach we used a subjective discount rate of 1.5% per year (Nordhaus discount rate) which is stated in the revised manuscript (p 12). This is in accordance with estimates about how individuals discount over relatively short time-spans (up to a few decades, see e.g., (Nordhaus, 2007)). Climate change operates over substantially longer horizons and e.g., the Stern Review argues on moral grounds in favour of using substantially lower discount rates (Stern, 2007). In our model, the key consequence of using a lower discount rate is to increase the optimal tax and thus reduce emissions in the scenarios where the tax is used. For an indication of how sensitive the optimal tax is to changes in the discount rate, see Golosov et al. (2014).

—Specific items—

p2 line 10 - mitigation isn’t solely for the purpose of decreasing negative impacts on human society. also for terrestrial biosphere (e.g., biodiversity, ecosystem function).

Response: We added “and the terrestrial biosphere” in the revised manuscript (p 2).

p4 lines 6-8: climate impacts isn’t the only factor driving yield changes over time (also yield gap convergence)

Response: We clarified the different drivers of yield changes in the revised manuscript (p 9).

p4 line 20: how are energy supplies modeled, in order to get supplies and demands to balance? Are there exogenous supply curves used?

Response: No, the supply and demand are determined by profit maximizing forms facing technological constraints and taxes.

p4 lines 20-21: all IA models represent energy markets explicitly, and have since the first-generation IA models back in the 1980’s (e.g., Edmonds-Reilly-Barnes was first documented in 1986).

Response: The models referred to describe markets as supply and a demand functions calibrated to match historic data and this is very different from our approach (see response to first comment). The authors mentioned by the referee are quite explicit about this and note that calibrated supply and demand functions are not meant to be a reasonable description of human behaviour. The approach here is to make a description of the market participants, their objective functions, constraints and information. To reduce the risk of misunderstanding, we use the term “micro-foundations”, in the revised draft (p 6). We state that this is to be interpreted as “Supply and demand are derived from an explicit description of the objectives and constraints of forward-looking market participants operating in a potentially stochastic environment.”.

p4 lines 23-25: given the complexities involved, I don’t see how one can reasonably state that the % GDP loss is a linear function of the global average temperature, but given that it is another study that is being cited, please provide a 1-2 sentence description of how this was estimated in that study—over what time scale, geographic scale, temperature change, and was is an empirical estimate from historical data, or a model-derived estimate? It is crucially important for the results in this study, but strikes me as very questionable.
Response: This was not well described in the manuscript. We added description of this in the revised manuscript (p 6). It should be noted that the linearity is not from temperature to damages (this is convex) but from CO2 concentration to the log of GWP.

p5 line 2: the emissions pathways from this model should be compared with the published ssp’s, and harmonized to the extent possible.

Response: We will prepare a figure/table where emissions pathways of the different SSPs are compared with the results of Riahi et al (2017) (p 46).

p5, lines 25-30: from my understanding of the methods later on, trade is set a priori and cropland expansion is used to modify the supply, so that it is equal to demand plus or minus net trade. this is a bit unusual in this field; in most models, trade is price sensitive, and can be an important determinant of the equilibrium between agricultural production and demand. it would be a good idea to make sure the results from this approach are reasonable in India, which has already very high cropland shares, and a population that is growing fast and becoming more wealthy, both of which put significant upward pressure on agricultural product demands.

Response: The trade mechanism without explicitly modelling prices is one of the key characteristics of the parsimonious land use model and has been evaluated for the time period 1991-2010 for selected countries. For India, the modelled cereal land captured the observed cereal land very well (Engström et al., 2016b).

p6, line 29: it is stated that bioenergy is only produced on abandoned cropland; what is used to estimate abandoned cropland? I’m not aware of any inventories that disaggregate this quantity specifically, but there are vast quantities of land in the former Soviet Union (Central Asia), the Middle East, and the forests of the eastern United States that were cropland at some point in human history. it is hard to see how these lands would be the preferred sites for bioenergy production, particularly in light of the locations where cropland expansion is currently taking place (e.g., tropical rainforests).

Response: What was meant here was that in first place bioenergy production is simulated to occur in countries where yield improvements (and/or decreasing demand) freed cropland in the previous time-step. We clarified this in the revised manuscript (p 9).

p7 line 30: the Hurtt et al (2011) dataset distinguished pasture on the basis of land use, not land cover class. it classified as pasture vast tracts of land area that are not grassland, including most of Tibet, Australia, Central Asia, and the western USA. it’s probably not correct to assume this is all grass, but it might also not be important for the study; I can’t tell.

Response: It is true that the pasture areas from Hurtt et al. (2011) cover large areas that should probably not be considered as pastures, but rather as rangelands. This is not explicitly covered in the model, but the implemented management (grazing and cutting) of the pastures in LPJ-GUESS is an intermediate between intensive and extensive. Also, climatic conditions and soils will influence the productivity and carbon sequestration locally, and thus capture e.g. the low productivity in the areas where the land cover is rangelands rather than pastures.

p8 line 10: irrigation, N application, and tillage intensity are held at base year levels while yield gaps are assumed to close. However, in Mueller et al. (2012), these were the main factors that account for present-day yield gaps.
Response: It is a limitation of our study that we account only for impacts of biophysical forcings, i.e. climate change, CO2 fertilisation and N deposition on yield gap, not effects of management changes such as irrigation, N application and tillage. This will be pointed out in a revised version of the Limitations subsection (4.3) in the discussion (p 31). It should be noted that the cropland yield simulations are not used directly in PLUM, but are used to calculate a country-specific scaling factor for the yield gap. This will be made more clear in the revised manuscript (p 9 and 10) where we will add a short description of the yield gap implementation in PLUM (see also reply to comment above).

p11 - for any grid cell, the yield impact is not a simple linear function of the radiative forcing. I’m not sure what is gained by using this probability-weighted approach as opposed to just simply assigning a single RCP scenario that is most similar to the emissions outcome of the given scenario.

Response: Using the probability-weighted approach has the advantage that in case of a concentration scenario of a given SSP that lie between two RCPs we did not need to favour one RCP over the other or simulate a larger number of scenarios (multiple combinations). This is clarified in the revised manuscript (p 5).

Figure 4 - Please clarify whether global cropland (4d) includes global cropland for bioenergy (4c). It did in the SSP reporting database and in Schmitz et al. (2014), so hopefully it does here too!

Response: Yes, global cropland includes global cropland for bioenergy, which is clarified in the revised manuscript (p 18).

References

As editor, I am submitting a reviewer comment, thus closing the discussion, in light of
the authors’ long wait for the completion of this review process and of the first reviewer’s
efficient and thorough review.

The authors present a study of an integrated assessment model in which they first find
parameter settings that allow the model to approximate a set of scenarios described in
the Shared Socio-economic Pathways framework, and then add a mechanism intended
to represent a carbon tax imposed on fossil fuel combustion, and note the impact of
this tax on gross world product, on fossil fuel use, and on agricultural activity.

I concur with the first reviewer’s comments and recommendations, especially with regard
to the desirability of a more realistic accounting of the local cost to wealth of
climate impacts (since these are already spatially resolved for use in the ecosystem
model).

I have a number of additional suggestions for clarifications. It was not immediately
clear to me that the various SSP scenarios would be imposed on the model through
parameter choices (as opposed, for example to forcing the model through variable
population growth rates or some other forcing mechanism). The introduction could be
rewritten to make this much clearer, and also to address the first reviewer’s concerns
about how consistent the model trajectories are with the SSPs as defined.

The discussion of "damage on GWP" is confusing- this seems to be just a proxy for
global warming averted, but since the climate-economy model calculates GWP explicitly,
couldn’t the GWP itself be shown, so that the increase in GWP due to the optimized
carbon tax would be apparent in Figure 4? Similarly, the terms "challenges to adaptation"
and "challenges to mitigation" don’t seem to be as parallel in meaning as their
grammatical parallelism would suggest. "Challenges to adaptation" seems to indicate
political resistance to adaptation, while "challenges to adaptation" seems to indicate a
structural likelihood of a lot of damage to GWP due to warming. Perhaps these should
be rephrased as "resistance to mitigation" and "wealth available for adaptation" (which
would have the opposite sign to "challenges to adaptation")? In this regard, l. 21 on
page 8 seems problematic without a clear baseline: since higher means more damage
per unit Carbon emitted, the required reduction in emissions to achieve a given
reduction in damage is actually less, though of course the reduction in emissions required
to achieve a given low *level* of damage would be larger.

Response:
Dear editor,
Thank you for your comments. The model is driven by inputs such as population and economic growth and scenarios are
differentiated on the basis of these inputs, as well as parameter choices. Following your suggestion this is clarified in the
introduction, also emphasising the value of the study in providing independent interpretations of the SSP narratives,
compared with the published realisations in the SSP database (page 2 and 3). It is important to note there is no objective
“right” interpretation of these (qualitative and relative) narratives in quantitative terms. Thus there is a place for different
interpretations based on different defensible approaches to stimulate debate and accommodate the many dimensions of
uncertainty surrounding the actual evolution of the biophysical-societal system in the 21st century. In this light we believe
our study is a relevant and valid alternative contribution, complementing the “official” SSP projections.
The damage on GWP is proxy for the impact of global warming. The climate economy model does not calculate GWP explicitly, but GWP is the sum of all countries’ GDPs (provided from the SSP database). Throughout the manuscript we used the SSP terminology which ‘collapses’ the multi-faceted futures described by each SSP onto the two dimensions of “challenges to adaptation” and “challenges to mitigation”. This terminology is now well-established in relevant literature and it would be confusing to adopt alternative terminology in this paper. We assumed that the challenge to mitigation impacts the level of the global carbon tax that can be implemented in the respective scenario. For example, with larger challenges to mitigation the carbon tax level would be less optimal, while the level of the global carbon tax is optimal in scenarios with low challenges to mitigation. We clarified in the revised manuscript (p 4) that the characteristics of the SSPs determine the challenge to mitigation and that it is not a political resistance to mitigation per se that differentiates the SSPs. For example, in the regionalized, not internationally cooperating SSP3 world with the use of unconventional and domestic energy resources the implementation of a global optimal carbon tax would be very challenging. Challenges to adaptation map to both the level of climate-related damages expected in the absence of adaptation, and the amount of adaptive capacity implied by the SSP storyline. Thus, for example, the highly engineered and developed infrastructure and attainment of human development goals implies a low challenge for adaptation, rather that there is much wealth needed for adaptation.