Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.635 IF 3.635
  • IF 5-year<br/> value: 3.869 IF 5-year
    3.869
  • CiteScore<br/> value: 4.15 CiteScore
    4.15
  • SNIP value: 0.995 SNIP 0.995
  • SJR value: 2.742 SJR 2.742
  • IPP value: 3.679 IPP 3.679
  • h5-index value: 21 h5-index 21
https://doi.org/10.5194/esdd-6-2273-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
09 Nov 2015
Review status
This discussion paper has been under review for the journal Earth System Dynamics (ESD). A final paper in ESD is not foreseen.
Severe summer heat waves over Georgia: trends, patterns and driving forces
I. Keggenhoff1, M. Elizbarashvili2, and L. King1 1Justus Liebig University Giessen, Department of Geography, Giessen, Germany
2Ivane Javakhishvili Tbilisi State University, Department of Geography, Tbilisi, Georgia
Abstract. During the last 50 years Georgia experienced a rising number of severe summer heat waves causing increasing heat-health impacts. In this study, the 10 most severe heat waves between 1961 and 2010 and recent changes in heat wave characteristics have been detected from 22 homogenized temperature minimum and maximum series using the Excess Heat Factor (EHF). A composite and Canonical Correlation Analysis (CCA) have been performed to study summer heat wave patterns and their relationships to the selected predictors: mean Sea Level Pressure (SLP), Geopotential Height at 500 mb (Z500), Sea Surface Temperature (SST), Zonal (u-wind500) and Meridional Wind at 500 mb (v-wind500), Vertical Velocity at 500 mb (O500), Outgoing Longwave Radiation (OLR), Relative Humidity (RH500), Precipitation (RR) and Soil Moisture (SM). Most severe heat events during the last 50 years are identified in 2007, 2006 and 1998. Largest significant trend magnitudes for the number, intensity and duration of low and high-impact heat waves have been found during the last 30 years. Significant changes in the heat wave predictors reveal that all relevant surface and atmospheric patterns contributing to heat waves have been intensified between 1961 and 2010. Composite anomalies and CCA patterns provide evidence of a large anticyclonic blocking pattern over the southern Ural Mountains, which attracts warm air masses from the Southwest, enhances subsidence and surface heating, shifts the African Intertropical Convergence Zone (ITCZ) northwards, and causes a northward shift of the subtropical jet. Moreover, pronounced precipitation and soil moisture deficiency throughout Georgia contribute to the heat wave formation and persistence over Georgia. Due to different large- to mesoscale circulation patterns and the local terrain, heat wave effects over Eastern Georgia are dominated by subsidence and surface heating, while convective rainfall and cooling are observed in the West.

Citation: Keggenhoff, I., Elizbarashvili, M., and King, L.: Severe summer heat waves over Georgia: trends, patterns and driving forces, Earth Syst. Dynam. Discuss., 6, 2273-2322, https://doi.org/10.5194/esdd-6-2273-2015, 2015.
I. Keggenhoff et al.
I. Keggenhoff et al.
I. Keggenhoff et al.

Viewed

Total article views: 382 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
206 153 23 382 2 8

Views and downloads (calculated since 09 Nov 2015)

Cumulative views and downloads (calculated since 09 Nov 2015)

Saved

Discussed

Latest update: 17 Aug 2017
Publications Copernicus
Download
Short summary
Georgia experienced a rising number of severe summer heat waves between 1961 and 2010. Heat wave patterns and their relationships to surface and atmospheric predictors reveal a blocking anticyclone over the southern Ural, which attracts warm air from the South, enhances heating processes over Georgia and shifts large-scale wind streams over Eurasia northwards. Moreover, pronounced precipitation and soil moisture deficiency amplifies heat wave severity and persistence.
Georgia experienced a rising number of severe summer heat waves between 1961 and 2010. Heat wave...
Share