

Supplement of

Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 $^\circ C$ and 2 $^\circ C$

C.-F. Schleussner et al.

Correspondence to: C.-F. Schleussner (carl.schleussner@climateanalytics.org)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

S1 Spatial aggregation of extreme event and climate impact projections

As described in Section 2 of the main manuscript, the projections for extreme events, water availability and crop yields presented in Section 3 and 4 of the main manuscript are based on multi-model ensembles from the CMIP5 and ISI-MIP archive (Taylor et al., 2011; Warszawski et al., 2013) and

5 aggregated over distinct world regions. For each individual model m from the model ensemble Mand respective realizations $e_m \in E_m$, the aggregated distributions $D_{m,e_m}^{R,W}$ for world region R and warming level W are derived as

$$D_{m,e_m}^{R,W} = \left\{ \frac{1}{20} \sum_{t \in T_{m,e_m}^W} x_{m,e_m,t,i} - \bar{x}_{m,e_m,ref,i}, \text{ for all } i \in R \right\}$$
(1)

with x denoting individual grid cells, \bar{x}_{ref} the grid-cell average over the reference period 1986-2005 10 and T_{m,e_m}^W indicating the model dependent time-slice for the respective warming level W.

S1.1 Regional cumulative density functions for 1.5 °C and 2 °C

To ensure equal weighting of individual models independent of the number of realizations E_m available, further analysis is performed on the multi-realization mean $\bar{D}_m^{R,W}$. Probability density functions $(PDF_m^{R,W})$ are fitted using a Gaussian kernel density estimator and integrated to the cu-15 mulative density functions $(CDF_m^{R,W})$. For each world region R, the two warming levels $W \in [1.5^{\circ}C, 2^{\circ}C]$ and respective climate indices, the ensemble median and the 17 % and 83 % quantile are derived and given in Tables S2-8.

S1.2 Derivation of regional cumulative density functions for natural variability

Multiple realizations E_m for individual models allow to estimate cumulative density functions as 20 they would arise from natural variability alone. To this end, pair-wise differences between the individual members are derived for the respective models

$$D_{m,e_{j,k}}^{R,ref} = \left\{ \bar{x}_{m,e_{j},ref,i} - \bar{x}_{m,e_{k},ref,i}, \text{ for all } i \in R \text{ and } e_{j}, e_{k} \in E_{m} \right\}$$

$$\tag{2}$$

Respective CDFs are derived as described above and the ensemble median and the 17 % and 83 % quantile are derived over the full ensemble $D^{R,ref}$. Multiple realizations are only available for the

25 CMIP5 and not the ISI-MIP archive, which is why estimates natural variability CDFs for water availability and crop yield impacts cannot be provided.

Table S1. Overview of models of the CMIP5 model ensemble used in these projections, the respective 20year time slices for a 1.5° C and 2° C warming (see Section 2) and their representation in the Temperature and Precitipation as well as ISI-MIP ensemble. Please note that the 5 GCMs used in the ISI-MIP projections have been bias-corrected (Hempel et al., 2013).

Model	1.5	2	Temperature	Precipitation	ISIMIP
bcc-csm1-1-m	[2016,2035]	[2034,2053]		X	
CanESM2	[2009,2028]	[2022,2041]	x	Х	
CCSM4	[2020,2039]	[2035,2054]	х		
CESM1-BGC	[2018,2037]	[2032,2051]		Х	
CMCC-CM	[2028,2047]	[2040,2059]		Х	
CMCC-CMS	[2017,2036]	[2029,2048]	х	Х	
CSIRO-Mk3-6-0	[2017,2036]	[2032,2051]	х	Х	
EC-EARTH	[2019,2038]	[2034,2053]	х	Х	
GFDL-ESM2M	[2028,2047]	[2044,2063]			х
HadGEM2-ES	[2010,2029]	[2022,2041]			х
inmcm4	[2034,2053]	[2048,2067]		Х	
IPSL-CM5A-LR	[2016,2035]	[2029,2048]	х		х
MIROC-ESM	[2014,2033]	[2023,2042]	х	Х	
MIROC-ESM-CHEM	[2010,2029]	[2022,2041]	х	Х	х
MIROC5	[2023,2042]	[2036,2055]	х	Х	
MPI-ESM-LR	[2019,2038]	[2032,2051]	x	Х	
MPI-ESM-MR	[2022,2041]	[2036,2055]		Х	
MRI-CGCM3	[2026,2045]	[2039,2058]	x		
NorESM1-M	[2022,2041]	[2038,2057]		Х	х

Table S2. Median projections and KS test results for changes in temperature related extremes resolved for different world regions and a 1.5 $^{\circ}$ C and 2 $^{\circ}$ C warming level. The likely range over the model ensemble (66 % likelihood) is indicated in square brackets. The KS test gives the share of models from the model ensemble for which the null hypothesis that the regional aggregated distribution for 1.5 $^{\circ}$ C and 2 $^{\circ}$ C are drawn from the same underlying probability distribution is rejected at the 95 % significance level.

		TXX $[\sigma]$			WSDI [days]	
	$1.5^{\circ} \mathrm{C}$	$2^{\circ} C$	KS [%]	1.5° C	2° C	KS [%]
ALA	0.6 [0.3,0.9]	0.9 [0.5,1.3]	100	33.9 [23.3,40.9]	46.2 [38.3,54.1]	100
AMZ	1.5 [1.4,2.0]	2.3 [2.0,2.8]	100	58.5 [37.4,75.2]	90.2 [63.8,120.2]	100
CAM	1.6 [1.3,2.2]	2.2 [1.7,3.1]	100	58.5 [47.1,75.2]	81.4 [70.0,94.6]	100
CAS	1.1 [0.7,1.2]	1.7 [1.2,2.0]	92	25.9 [23.3,35.6]	41.8 [32.1,55.0]	100
CEU	1.0 [0.8,1.2]	1.4 [1.1,1.7]	92	27.7 [20.6,34.7]	37.4 [26.8,47.9]	100
CGI	0.7 [0.6,0.9]	1.2 [0.9,1.5]	100	24.2 [20.6,30.3]	33.9 [28.6,49.7]	100
CNA	0.9 [0.6,1.3]	1.4 [1.1,1.6]	100	24.2 [20.6,28.6]	37.4 [33.0,43.5]	100
EAF	1.7 [1.3,2.2]	2.6 [1.9,3.0]	85	56.8 [36.5,77.9]	90.2 [55.9,118.4]	100
EAS	1.0 [0.8,1.2]	1.6 [1.3,1.7]	100	22.4 [17.1,27.7]	35.6 [25.9,40.9]	100
ENA	1.1 [0.9,1.5]	1.7 [1.4,2.3]	100	22.4 [17.1,30.3]	34.7 [28.6,55.0]	100
MED	1.3 [1.0,1.6]	1.8 [1.5,2.2]	100	33.0 [26.8,45.3]	50.6 [44.4,68.2]	100
NAS	0.8 [0.4,0.9]	1.0 [0.6,1.4]	100	24.2 [18.0,32.1]	33.9 [25.9,48.8]	100
NAU	1.1 [0.6,1.5]	1.5 [1.0,2.1]	92	36.5 [27.7,44.4]	52.3 [40.0,62.0]	93
NEB	1.7 [1.1,2.0]	2.6 [1.5,2.9]	85	55.0 [43.5,67.3]	84.1 [70.0,94.6]	93
NEU	0.8 [0.5,1.2]	1.1 [0.8,1.4]	100	30.3 [23.3,51.5]	39.1 [33.0,67.3]	100
SAF	1.5 [0.9,1.8]	2.2 [1.7,2.5]	100	43.5 [32.1,53.2]	70.0 [50.6,80.5]	100
SAH	1.8 [1.2,2.4]	2.7 [1.8,3.5]	100	46.2 [32.1,58.5]	80.5 [50.6,87.6]	100
SAS	1.2 [0.8,1.5]	1.9 [1.2,2.0]	100	48.8 [36.5,65.6]	76.1 [53.2,97.3]	100
SAU	0.7 [0.6,1.0]	1.1 [0.9,1.4]	92	12.7 [8.3,15.4]	19.8 [13.6,25.9]	100
SEA	1.9 [1.4,2.5]	2.8 [2.0,3.6]	100	70.0 [58.5,92.9]	88.5 [71.7,114.9]	100
SSA	1.0 [0.5,1.1]	1.3 [0.9,1.6]	100	15.4 [12.7,19.8]	22.4 [18.0,31.2]	100
TIB	1.0 [0.8,1.3]	1.5 [1.2,2.0]	100	24.2 [19.8,32.1]	37.4 [32.1,50.6]	100
WAF	1.9 [1.3,2.2]	2.6 [2.0,3.3]	100	46.2 [34.7,64.7]	79.6 [59.4,107.8]	100
WAS	1.4 [1.1,2.2]	2.3 [1.7,2.7]	100	41.8 [28.6,56.8]	66.4 [48.8,85.8]	100
WNA	1.0 [0.7,1.2]	1.6 [1.0,1.8]	100	31.2 [27.7,38.3]	49.7 [41.8,56.8]	100
WSA	1.4 [1.0,2.1]	2.0 [1.5,2.5]	92	43.5 [26.8,51.5]	54.1 [28.6,72.6]	86
Global	1.2 [1.0,1.4]	1.8 [1.5,2.0]	100	33.0 [29.5,40.9]	47.9 [43.5,55.0]	100

		RX5Day [%]			CDD [%]	
	1.5° C	$2^{\circ} C$	KS [%]	1.5° C	$2^{\circ} \mathrm{C}$	KS [%]
ALA	7 [5,9]	11 [7,12]	94	-3 [-4,-1]	-5 [-7,-2]	81
AMZ	6 [0,7]	6 [0,12]	59	6 [0,9]	8 [1,16]	88
CAM	3 [0,8]	4 [-3,9]	65	5 [1,7]	7 [4,12]	62
CAS	5 [1,11]	7 [1,11]	35	0 [-4,7]	4 [-6,9]	62
CEU	7 [3,8]	7 [5,11]	59	1 [-1,8]	4 [0,11]	56
CGI	7 [4,8]	10 [8,12]	94	-3 [-6,-1]	-5 [-7,-3]	69
CNA	5 [3,7]	7 [3,9]	59	1 [-4,5]	2 [-1,4]	38
EAF	5 [2,11]	8 [5,14]	71	1 [-3,4]	3 [-3,5]	50
EAS	5 [2,7]	8 [5,11]	76	1 [-4,4]	-1 [-4,5]	38
ENA	6 [3,7]	7 [5,9]	35	2 [0,5]	2 [0,5]	50
MED	1 [-1,4]	3 [0,5]	24	7 [4,10]	11 [6,15]	88
NAS	6 [5,7]	10 [7,11]	100	-4 [-6,-1]	-5 [-7,-2]	69
NAU	4 [0,7]	5 [1,10]	35	7 [-1,11]	8 [1,15]	62
NEB	7 [0,10]	7 [1,14]	47	4 [0,10]	7 [4,14]	62
NEU	6 [4,7]	8 [6,11]	71	2 [-3,4]	0 [-1,4]	62
SAF	3 [0,6]	4 [0,7]	41	5 [0,7]	7 [4,11]	81
SAH	4 [-8,11]	4 [-9,18]	53	1 [-2,6]	3 [-2,7]	56
SAS	7 [4,8]	10 [7,14]	53	4 [-1,7]	5 [-1,9]	69
SAU	2 [-2,5]	3 [-1,7]	59	4 [0,8]	6 [1,13]	31
SEA	5 [3,6]	7 [4,11]	76	6 [0,10]	6 [0,9]	62
SSA	3 [0,7]	5 [2,7]	41	3 [-1,5]	4 [0,9]	62
TIB	6 [4,8]	8 [5,11]	53	-3 [-5,1]	-4 [-9,2]	50
WAF	6 [1,8]	7 [3,12]	71	1 [-1,4]	2 [0,5]	69
WAS	6 [0,11]	5 [2,14]	53	0 [-5,6]	3 [-4,8]	69
WNA	5 [3,7]	5 [4,8]	65	1 [-2,4]	1 [0,7]	62
WSA	3 [0,5]	4 [0,7]	35	4 [1,6]	7 [0,8]	38
Global	5 [4,6]	7 [5,7]	100	2 [0,4]	2 [1,6]	100

Table S3. Same as Tab. S2, but for precipitation related extremes.

		Runoff [%]				Runoff [%]	
	$1.5^{\circ} C$	2° C	KS [%]		1.5° C	2° C	KS [%]
ALA	8.4 [3.3,14.3]	12.3 [7.6,16.6]	100	NEB	-6.5 [-19.4,3.7]	-3.3 [-23.3,30.7]	100
AMZ	-5.7 [-14.7,-1.0]	-5.7 [-11.5,-1.8]	95	NEU	1.4 [-4.1,5.7]	1.8 [-6.1,9.2]	100
CAM	-7.2 [-20.9,-0.6]	-2.5 [-33.5,8.8]	98	SAF	-5.7 [-17.0,2.2]	-8.4 [-17.8,-0.6]	87
CAS	-1.4 [-9.6,4.9]	-3.7 [-17.0,1.8]	100	SAH	-4.9 [-25.6,10.0]	-6.5 [-37.4,15.1]	91
CEU	-2.5 [-9.6,1.0]	-3.7 [-12.3,5.7]	100	SAS	7.6 [0.2,11.9]	11.5 [1.0,17.4]	100
CGI	6.1 [3.7,9.2]	10.0 [6.8,13.9]	100	SAU	-7.2 [-33.9,-1.4]	-12.7 [-44.4,6.8]	100
CNA	4.1 [-3.3,11.2]	2.2 [-8.0,7.2]	100	SEA	1.4 [-2.2,8.0]	-0.6 [-6.8,12.7]	100
EAF	4.9 [-5.3,18.6]	5.3 [-4.5,27.2]	98	SSA	-5.3 [-15.9,5.3]	-7.2 [-15.9,5.7]	96
EAS	-1.8 [-5.3,2.2]	1.4 [-9.2,5.7]	100	TIB	5.3 [-2.9,11.2]	5.7 [-2.5,13.5]	96
ENA	2.2 [-0.6,8.4]	1.8 [-3.3,6.8]	100	WAF	-0.2 [-2.2,3.3]	-1.0 [-6.8,4.1]	100
MED	-8.8 [-15.5,-4.5]	-17.0 [-28.0,-8.0]	100	WAS	-1.8 [-10.0,11.9]	-7.6 [-13.5,1.8]	100
NAS	8.4 [2.9,11.2]	11.2 [5.3,14.7]	100	WNA	1.8 [-8.0,5.7]	2.2 [-8.4,8.8]	100
NAU	-10.4 [-36.2,-2.5]	-6.8 [-40.5,7.6]	98	WSA	-1.4 [-8.4,2.2]	-6.1 [-11.9,1.8]	69
Global	0.6 [-2.5,3.3]	0.6 [-2.5,3.7]	100				

Table S4. Same as Tab. S2, but for projected changes in annual mean runoff.

	Wheat <i>CO</i> ₂ [%]			Wheat noCO ₂ [%]		
	1.5° C	$2^{\circ} C$	KS [%]	1.5° C	2° C	KS [%]
AMZ	-26.0 [-47.2,19.8]	-33.1 [-57.7,20.9]	90	-35.4 [-57.7,-1.4]	-62.4 [-70.6,-15.5]	95
CAM	-3.7 [-27.2,10.4]	-13.1 [-42.5,11.5]	90	-22.5 [-44.8,-11.9]	-19.0 [-40.1,-9.6]	100
CAS	4.5 [-11.9,16.2]	3.3 [-16.6,18.6]	93	-10.8 [-24.9,5.7]	-10.8 [-31.9,18.6]	95
CEU	16.2 [4.5,32.7]	17.4 [4.5,38.6]	97	-2.5 [-10.8,8.0]	-6.1 [-13.1,5.7]	100
CGI	25.6 [-6.1,40.9]	25.6 [-11.9,45.6]	87	2.2 [-7.2,9.2]	-1.4 [-20.2,5.7]	95
CNA	4.5 [-24.9,13.9]	3.3 [-33.1,17.4]	100	-8.4 [-42.5,4.5]	-14.3 [-55.4,16.2]	100
EAF	-6.1 [-27.2,17.4]	-6.1 [-34.2,20.9]	87	-15.5 [-31.9,16.2]	-19.0 [-43.6,13.9]	100
EAS	11.5 [-0.2,22.1]	13.9 [-0.2,25.6]	97	-1.4 [-13.1,4.5]	-6.1 [-19.0,4.5]	95
ENA	9.2 [-6.1,25.6]	8.0 [-9.6,29.2]	100	-8.4 [-36.6,-0.2]	-11.9 [-44.8,-2.5]	100
MED	5.7 [-3.7,19.8]	5.7 [-4.9,22.1]	83	-9.6 [-20.2,11.5]	-10.8 [-24.9,11.5]	95
NAS	-1.4 [-15.5,31.5]	-4.9 [-21.3,39.7]	100	-8.4 [-21.3,8.0]	-7.2 [-22.5,4.5]	95
NAU	4.5 [-16.6,26.8]	3.3 [-20.2,32.7]	87	-10.8 [-40.1,17.4]	-22.5 [-47.2,-0.2]	100
NEB	-8.4 [-27.2,23.3]	-8.4 [-42.5,20.9]	87	-28.4 [-46.0,-13.1]	-34.2 [-55.4,-16.6]	95
NEU	15.1 [5.7,40.9]	16.2 [4.5,47.9]	83	5.7 [-7.2,20.9]	3.3 [-10.8,20.9]	91
SAF	1.0 [-16.6,18.6]	-0.2 [-20.2,20.9]	97	-22.5 [-34.2,16.2]	-24.9 [-50.7,16.2]	100
SAH	-1.4 [-29.5,19.8]	-2.5 [-34.2,19.8]	70	-22.5 [-73.0,4.5]	-33.1 [-83.6,-14.3]	91
SAS	1.0 [-24.9,18.6]	-2.5 [-36.6,19.8]	100	-15.5 [-49.5,-7.2]	-22.5 [-58.9,-9.6]	100
SAU	10.4 [-1.4,19.8]	11.5 [-1.4,20.9]	80	-10.8 [-24.9,12.7]	-11.9 [-30.7,11.5]	86
SEA	-8.4 [-53.0,30.3]	-11.9 [-65.9,38.6]	90	-30.7 [-63.6,-4.9]	-41.3 [-75.3,10.4]	95
SSA	-0.2 [-10.8,13.9]	1.0 [-11.9,17.4]	90	-13.1 [-31.9,1.0]	-17.8 [-50.7,-6.1]	100
TIB	6.8 [1.0,19.8]	8.0 [1.0,23.3]	77	-11.9 [-21.3,-4.9]	-13.1 [-21.3,-6.1]	77
WAF	-13.1 [-47.2,18.6]	-19.0 [-58.9,22.1]	100	-46.0 [-55.4,-21.3]	-56.6 [-68.3,-27.2]	100
WAS	6.8 [-1.4,25.6]	5.7 [-3.7,35.0]	87	-11.9 [-26.0,-2.5]	-15.5 [-34.2,-1.4]	100
WNA	12.7 [4.5,23.3]	11.5 [2.2,29.2]	93	-3.7 [-11.9,3.3]	-7.2 [-17.8,3.3]	100
WSA	8.0 [-1.4,22.1]	4.5 [-8.4,24.5]	47	-1.4 [-9.6,13.9]	-1.4 [-21.3,13.9]	64
Global	2.2 [-6.1,17.4]	-0.2 [-8.4,20.9]	100	-14.3 [-20.2,-4.9]	-19.0 [-36.6,-6.1]	100

Table S5. Same as Tab. S2, but for projected changes in wheat yields. Projections including and excluding CO_2 -fertilization are assessed seperatly.

	Maize <i>CO</i> ₂ [%]			Maize noCO ₂ [%]		
	$1.5^{\circ} \mathrm{C}$	2° C	KS [%]	1.5° C	2° C	KS [%]
AMZ	-7.2 [-35.4,2.2]	-13.1 [-40.1,-0.2]	93	-10.8 [-35.4,5.7]	-16.6 [-38.9,3.3]	100
CAM	-6.1 [-13.1,4.5]	-10.8 [-36.6,5.7]	100	-14.3 [-43.6,-9.6]	-19.0 [-47.2,-11.9]	100
CAS	-7.2 [-16.6,9.2]	-9.6 [-23.7,11.5]	77	-11.9 [-27.2,4.5]	-11.9 [-29.5,-0.2]	86
CEU	10.4 [4.5,50.3]	9.2 [-2.5,55.0]	93	3.3 [-4.9,31.5]	1.0 [-7.2,25.6]	77
CGI	53.8 [25.6,120.7]	52.6 [11.5,148.9]	43	47.9 [11.5,109.0]	40.9 [16.2,141.9]	41
CNA	-2.5 [-15.5,4.5]	-6.1 [-36.6,1.0]	93	-7.2 [-17.8,-0.2]	-10.8 [-21.3,4.5]	100
EAF	-2.5 [-15.5,2.2]	-4.9 [-19.0,2.2]	97	-10.8 [-37.8,-0.2]	-14.3 [-30.7,-0.2]	91
EAS	1.0 [-3.7,22.1]	1.0 [-4.9,25.6]	90	-6.1 [-9.6,4.5]	-3.7 [-9.6,2.2]	91
ENA	-0.2 [-10.8,9.2]	-2.5 [-13.1,9.2]	86	-1.4 [-7.2,4.5]	-7.2 [-11.9,3.3]	77
MED	-2.5 [-9.6,16.2]	-1.4 [-11.9,17.4]	97	-6.1 [-11.9,1.0]	-10.8 [-16.6,-3.7]	86
NAS	46.8 [2.2,76.1]	42.1 [-9.6,75.0]	83	25.6 [-10.8,56.2]	20.9 [-8.4,71.4]	86
NAU	-4.9 [-30.7,10.4]	-13.1 [-38.9,8.0]	83	-11.9 [-31.9,4.5]	-19.0 [-36.6,-0.2]	82
NEB	-4.9 [-33.1,3.3]	-6.1 [-43.6,2.2]	93	-16.6 [-37.8,-2.5]	-19.0 [-43.6,-4.9]	100
NEU	69.1 [19.8,133.7]	69.1 [18.6,123.1]	38	76.1 [29.2,139.5]	69.1 [23.3,121.9]	41
SAF	-1.4 [-33.1,3.3]	-0.2 [-38.9,3.3]	97	-4.9 [-14.3,4.5]	-7.2 [-40.1,-1.4]	95
SAH	-9.6 [-36.6,8.0]	-14.3 [-43.6,6.8]	77	-22.5 [-44.8,-8.4]	-31.9 [-47.2,-13.1]	86
SAS	-7.2 [-11.9,2.2]	-10.8 [-16.6,2.2]	97	-11.9 [-35.4,-4.9]	-15.5 [-37.8,-6.1]	100
SAU	10.4 [-6.1,20.9]	9.2 [-8.4,22.1]	73	-4.9 [-9.6,4.5]	-10.8 [-26.0,1.0]	77
SEA	-4.9 [-13.1,-0.2]	-7.2 [-19.0,-1.4]	97	-10.8 [-37.8,-6.1]	-15.5 [-43.6,-9.6]	100
SSA	2.2 [-19.0,6.8]	-0.2 [-23.7,5.7]	83	-1.4 [-13.1,4.5]	-4.9 [-17.8,3.3]	95
TIB	1.0 [-8.4,16.2]	-0.2 [-8.4,24.5]	62	-7.2 [-13.1,-1.4]	-6.1 [-14.3,6.8]	64
WAF	-10.8 [-37.8,-0.2]	-8.4 [-34.2,-1.4]	96	-15.5 [-40.1,-4.9]	-20.2 [-42.5,-8.4]	100
WAS	-2.5 [-13.1,11.5]	-2.5 [-16.6,13.9]	87	-10.8 [-19.0,1.0]	-13.1 [-22.5,1.0]	86
WNA	5.7 [-3.7,25.6]	3.3 [-3.7,24.5]	83	10.4 [-3.7,22.1]	5.7 [-10.8,17.4]	82
WSA	9.2 [-10.8,22.1]	8.0 [-15.5,23.3]	47	-0.2 [-29.5,4.5]	-2.5 [-41.3,4.5]	44
Global	-1.4 [-26.0,8.0]	-6.1 [-37.8,2.2]	100	-8.4 [-26.0,4.5]	-11.9 [-33.1,-7.2]	100

Table S6. Same as Tab. S4, but for projected changes in maize yields.

	Soy <i>CO</i> ₂ [%]		Soy noCO ₂			
	1.5° C	2° C	KS [%]	1.5° C	2° C	KS [%]
AMZ	4.5 [-30.7,25.6]	3.3 [-27.2,38.6]	100	-15.5 [-47.2,1.0]	-20.2 [-55.4,-4.9]	100
CAM	-0.2 [-29.5,9.2]	-1.4 [-30.7,17.4]	100	-17.8 [-42.5,-11.9]	-24.9 [-50.7,-15.5]	100
CAS	-0.2 [-17.8,24.5]	-2.5 [-30.7,28.0]	90	-29.5 [-41.3,15.1]	-40.1 [-47.2,10.4]	95
CEU	20.9 [4.5,38.6]	18.6 [3.3,67.9]	83	-0.2 [-6.1,19.8]	-2.5 [-8.4,19.8]	73
CNA	4.5 [-21.3,26.8]	5.7 [-24.9,30.3]	97	-9.6 [-31.9,1.0]	-13.1 [-40.1,9.2]	86
EAF	8.0 [-8.4,26.8]	6.8 [-8.4,30.3]	93	-3.7 [-17.8,15.1]	-4.9 [-21.3,19.8]	100
EAS	9.2 [-15.5,30.3]	11.5 [-9.6,39.7]	97	-6.1 [-22.5,-1.4]	-8.4 [-28.4,-2.5]	100
ENA	-1.4 [-13.1,16.2]	-4.9 [-16.6,19.8]	63	-13.1 [-26.0,1.0]	-16.6 [-34.2,-7.2]	82
MED	9.2 [-0.2,25.6]	12.7 [4.5,30.3]	73	-2.5 [-8.4,66.7]	-4.9 [-9.6,89.0]	91
NAS	28.0 [-24.9,147.7]	32.7 [-20.2,138.4]	59	24.5 [8.0,140.7]	11.5 [-0.2,152.4]	55
NAU	9.2 [-9.6,22.1]	10.4 [-4.9,26.8]	38	-11.9 [-20.2,6.8]	-10.8 [-23.7,8.0]	50
NEB	3.3 [-26.0,28.0]	2.2 [-23.7,22.1]	97	-10.8 [-38.9,9.2]	-16.6 [-48.3,2.2]	100
NEU	79.6 [55.0,293.3]	82.0 [44.4,320.4]	9	52.6 [32.7,345.0]	47.9 [29.2,275.7]	19
SAF	15.1 [-4.9,26.8]	15.1 [-3.7,31.5]	90	6.8 [-19.0,13.9]	3.3 [-38.9,12.7]	100
SAH	4.5 [-21.3,35.0]	-8.4 [-27.2,36.2]	72	-21.3 [-46.0,11.5]	-29.5 [-58.9,9.2]	82
SAS	5.7 [-30.7,30.3]	-1.4 [-37.8,35.0]	100	-15.5 [-43.6,-10.8]	-21.3 [-55.4,4.5]	100
SAU	11.5 [-8.4,25.6]	13.9 [-4.9,31.5]	64	1.0 [-14.3,12.7]	-0.2 [-20.2,11.5]	59
SEA	8.0 [-26.0,33.9]	1.0 [-37.8,40.9]	93	-13.1 [-43.6,-2.5]	-16.6 [-51.9,-4.9]	100
SSA	11.5 [-15.5,23.3]	6.8 [-20.2,22.1]	100	-11.9 [-31.9,8.0]	-14.3 [-40.1,9.2]	100
TIB	9.2 [-16.6,35.0]	5.7 [-23.7,20.9]	76	-13.1 [-23.7,-3.7]	-13.1 [-31.9,5.7]	77
WAF	3.3 [-17.8,25.6]	-2.5 [-38.9,30.3]	100	-17.8 [-53.0,-7.2]	-22.5 [-62.4,-4.9]	100
WAS	1.0 [-21.3,22.1]	1.0 [-23.7,13.9]	86	-1.4 [-26.0,32.7]	15.1 [-31.9,43.2]	95
WNA	12.7 [-26.0,31.5]	15.1 [-30.7,37.4]	44	-10.8 [-20.2,-4.9]	-10.8 [-24.9,-7.2]	50
WSA	16.2 [-14.3,35.0]	12.7 [-16.6,38.6]	47	4.5 [-34.2,17.4]	1.0 [-35.4,15.1]	77
Global	6.8 [-2.5,28.0]	1.0 [-11.9,33.9]	100	-9.6 [-37.8,-6.1]	-11.9 [-24.9,-6.1]	100

Table S7. Same as Tab. S4, but for projected changes in soy yields.

	Rice CO ₂ [%]		Rice noCO ₂ [%]			
	1.5° C	2° C	KS [%]	1.5° C	2° C	KS [%]
AMZ	4.5 [-3.7,26.8]	4.5 [-4.9,32.7]	96	-16.6 [-23.7,-6.1]	-21.3 [-26.0,-9.6]	88
CAM	3.3 [-22.5,18.6]	1.0 [-9.6,23.3]	79	-14.3 [-21.3,-9.6]	-19.0 [-27.2,-13.1]	100
CAS	16.2 [-8.4,50.3]	16.2 [-19.0,58.5]	76	-17.8 [-40.1,-1.4]	-24.9 [-44.8,-6.1]	88
CEU	39.7 [4.5,112.5]	44.4 [3.3,107.8]	76	29.2 [-0.2,63.2]	23.3 [-9.6,56.2]	88
CNA	6.8 [-7.2,53.8]	8.0 [-9.6,63.2]	100	-6.1 [-27.2,6.8]	-8.4 [-37.8,1.0]	94
EAF	2.2 [-22.5,18.6]	5.7 [-17.8,18.6]	73	-13.1 [-16.6,3.3]	-14.3 [-20.2,39.7]	81
EAS	11.5 [-0.2,29.2]	12.7 [5.7,45.6]	100	-9.6 [-11.9,4.5]	-13.1 [-16.6,3.3]	71
ENA	5.7 [-2.5,56.2]	6.8 [-9.6,64.4]	84	-4.9 [-15.5,5.7]	-8.4 [-21.3,3.3]	94
MED	9.2 [-9.6,29.2]	9.2 [-28.4,52.6]	65	-11.9 [-17.8,9.2]	-17.8 [-20.2,8.0]	76
NAS	40.9 [-8.4,141.9]	40.9 [-14.3,231.1]	83	33.9 [9.2,229.9]	19.8 [-6.1,219.4]	82
NAU	2.2 [-17.8,57.3]	1.0 [-11.9,75.0]	100	-15.5 [-30.7,-0.2]	-20.2 [-44.8,-1.4]	82
NEB	3.3 [-21.3,22.1]	2.2 [-24.9,23.3]	78	-14.3 [-20.2,-1.4]	-19.0 [-22.5,-3.7]	94
NEU	47.9 [-11.9,323.9]	57.3 [-14.3,275.7]	30	26.8 [2.2,152.4]	25.6 [9.2,93.7]	57
SAF	6.8 [-2.5,23.3]	8.0 [-1.4,30.3]	80	-4.9 [-19.0,5.7]	-15.5 [-24.9,6.8]	76
SAH	15.1 [-15.5,60.9]	16.2 [-14.3,60.9]	50	-13.1 [-24.9,1.0]	-19.0 [-33.1,-6.1]	59
SAS	5.7 [-2.5,33.9]	3.3 [-4.9,40.9]	92	-13.1 [-22.5,58.5]	-22.5 [-29.5,3.3]	100
SAU	11.5 [-17.8,35.0]	10.4 [-16.6,43.2]	61	-8.4 [-35.4,18.6]	-0.2 [-37.8,22.1]	65
SEA	6.8 [-0.2,28.0]	6.8 [-1.4,35.0]	96	-11.9 [-16.6,-0.2]	-13.1 [-20.2,-0.2]	100
SSA	8.0 [-0.2,24.5]	8.0 [-0.2,22.1]	75	-4.9 [-15.5,9.2]	-8.4 [-20.2,4.5]	94
TIB	4.5 [-13.1,46.8]	8.0 [-16.6,52.6]	61	-10.8 [-21.3,1.0]	-20.2 [-29.5,-1.4]	69
WAF	8.0 [-1.4,29.2]	13.9 [-1.4,42.1]	75	-3.7 [-21.3,57.3]	-10.8 [-28.4,19.8]	69
WAS	11.5 [-9.6,26.8]	11.5 [-7.2,32.7]	71	-17.8 [-26.0,10.4]	-23.7 [-30.7,9.2]	88
WNA	29.2 [9.2,89.0]	30.3 [8.0,99.6]	56	15.1 [-9.6,55.0]	-0.2 [-11.9,46.8]	65
WSA	9.2 [-19.0,26.8]	4.5 [-16.6,25.6]	33	-2.5 [-11.9,3.3]	-8.4 [-17.8,-0.2]	41
Global	6.8 [-16.6,24.5]	6.8 [-14.3,26.8]	100	-8.4 [-16.6,4.5]	-15.5 [-21.3,13.9]	100

 Table S8.
 Same as Tab. S4, but for projected changes in rice yields.

Table S9. Regional share of glo	bal production in percent of wheat, rice, soy and maize in the year 2000 based
on Monfreda et al. (2008)	

Region	Maize	Rice	Soy	Wheat
ALA	0	0	0	0
AMZ	3.9	7.4	7.7	1.2
CAM	1.9	3.4	2.7	2.4
CAS	1.8	2.8	1.5	1.8
CEU	7.6	2.2	5.6	8.9
CGI	0.6	0	0.3	1.4
CNA	9.7	1.2	7.8	6.2
EAF	2.0	4.1	4.4	2.5
EAS	9.3	21.1	11.9	10.1
ENA	5.0	0.03	4.0	4.1
MED	5.8	5.3	3.9	4.3
NAS	5.3	1.2	7.1	4.8
NAU	1.7	0.02	1.3	1.1
NEB	1.4	2.0	2.4	0.7
NEU	0.6	0	0.5	4.5
SAF	2.4	4.3	4.0	8.1
SAH	0.4	0.9	0.3	0.7
SAS	2.4	6.4	4.2	4.2
SAU	2.8	1.6	1.4	2.3
SEA	3.2	6.3	3.2	0.3
SSA	5.0	5.4	7.2	3.2
TIB	4.3	6.0	6.5	6.3
WAF	2.0	5.1	2.1	2.7
WAS	4.1	3.5	3.1	3.7
WNA	8.0	0.5	2.2	8.4

Figure S1. Same as Fig. 1 but for wheat yields and with the effect of CO_2 -fertilization explicitly resolved. The left panel shows projections including CO_2 -fertilization, whereas this effect is deactivated for the projections shown in the right panel. Changes are given relative to the 1986-2005 reference period.

Figure S2. Same as Fig. S1 but for maize yields.

Figure S3. Same as Fig. S1 but for soy yields.

Figure S4. Same as Fig. S1 but for rice yields.

Figure S5. Regional share of global production of Maize, Rice, Soy and Wheat in the year 2000, based on data from Monfreda et al. 2008.

Figure S6. The calculation of the degree heating months (DHM) in a four months moving window of a sea surface temperature pathway.

References

- Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, Bulletin of the American Meteorological Society, 93, 485–498, doi:10.1175/BAMS-D-11-00094.1, 2011.
- 30 Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe, J.: The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project framework., Proceedings of the National Academy of Sciences of the United States of America, pp. 1–5, doi:10.1073/pnas.1312330110, 2013.