Explaining the seasonal cycle of the globally averaged CO$_2$ with a carbon cycle model

G.A. Alexandrov

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevsky 3, Moscow, 119017

Correspondence to: G.A. Alexandrov (g.alexandrov@ifaran.ru)
Abstract

The seasonal changes in the globally averaged atmospheric carbon dioxide concentrations reflect an important aspect of the global carbon cycle: the gas exchange between the atmosphere and terrestrial biosphere. The data on the globally averaged atmospheric carbon dioxide concentrations which are reported by NOAA/ESRL could be used to demonstrate the adequacy of the global carbon cycle models. However, it was found recently that the observed amplitude of seasonal variations in the atmospheric carbon dioxide concentrations is higher than simulated. In this paper, the factors that affect the amplitude of seasonal variations are explored using a carbon cycle model of reduced complexity. The model runs show that the low amplitude of the simulated seasonal variations may result from underestimated effect of substrate limitation on the seasonal pattern of heterotrophic respiration and from underestimated magnitude of the annual Gross Primary Production in the terrestrial ecosystems located to the north from 25N.

1 Introduction

The global mean monthly atmospheric concentrations of carbon dioxide provided by NOAA/ESRL (Conway and Tans, 2012) show that the carbon storage of the atmosphere undergoes regular seasonal changes. The amplitude of seasonal variations in the atmospheric carbon storage puts certain constraints on the choice of parameters in the models of global carbon cycle and the joint carbon-climate models. It would be natural to expect that models are tuned to reproduce the CO$_2$ growth curve – the basic scientific evidence of the global change, but this not the case. One may find papers demonstrating that carbon cycle models coupled with atmospheric transport models could reproduce seasonal cycle of CO$_2$ concentrations at some locations (Heimann et al., 1998; Dargaville et al., 2002; Randerson et al., 2009; Cadule et al., 2010; Anav et al., 2013). However, it is difficult to find an article comparing simulated seasonal variations in the atmospheric carbon storage with the globally averaged monthly concentrations of carbon dioxide reported by NOAA/ESRL. A recent article (Chen, 2011) reporting the results of such comparison brings bad news: the observed amplitude of seasonal variations in the atmospheric
carbon storage is larger than simulated. Where does the discrepancy come from? According to Chen (2011), ”The apparent discrepancy between modeling results and observations results from the “representation error” of observation stations” (Chen, 2011). This assumption is challenged here by demonstrating that the discrepancy can be reconciled through model tuning.

2 Methods

2.1 Net carbon exchange between the atmosphere and other pools

2.1.1 Observations

The seasonal cycle of the atmospheric carbon storage reflects the seasonal cycle of the net carbon exchange between the atmosphere and other pools. The de-trended net exchange \(N_a \) is derived from the de-trended atmospheric carbon storage \(dC_a \), which in its turn is calculated from the de-trended globally averaged monthly concentrations of carbon dioxide in the atmosphere \(d[CO_2] \) reported by NOAA/ESRL (Conway and Tans, 2012):

\[
dC_a(m) = 2.13 \times d[CO_2](m).
\]

Since \(dC_a(m) \) is the value of \(dC_a \) in the middle of the month \(m \), the value of \(dC_a \) in the beginning of the month \(m \) is calculated as the mean of its values in the middle of this month and in the middle of the preceding month, that is, as \((dC_a(m-1) + dC_a(m)) / 2 \), and the value of \(dC_a \) in the end of the month \(m \) is calculated as the mean of its values in the middle of this month and in the middle of the following month, that is, as \((dC_a(m) + dC_a(m+1)) / 2 \). Then \(N_a(m) \) is calculated as the difference between the value of \(dC_a \) in the end of the month \(m \) and its value in the beginning of the month \(m \) :

\[
N_a(m) = \frac{dC_a(m) + dC_a(m+1)}{2} - \frac{dC_a(m-1) + dC_a(m)}{2} \tag{1}
\]

that gives

\[
N_a(m) = \frac{dC_a(m+1) - dC_a(m-1)}{2}. \tag{2}
\]
The accuracy of monthly N_a estimates is determined by the accuracy of monthly $d[CO_2]$ estimates. Since monthly $d[CO_2]$ estimates are derived from local observations (Masarie and Tans, 1995), the accuracy of monthly N_a estimates depends on the adequacy of the observation network.

2.1.2 Modelling

The monthly N_a estimates could be also calculated using the following equation:

$$N_a(m) = -GPP(m) + R_a(m) + R_h(m) + \nu_a(m)$$

where GPP, R_a, and R_h are gross primary production, autotrophic respiration, and heterotrophic respiration of the terrestrial ecosystems, and ν_a is net carbon exchange between the atmosphere and remaining carbon pools.

The seasonal cycle of GPP, R_a, and R_h is simulated here using the concepts of the MONTHLYC model (Box, 1988) and the global fields of monthly actual evapotranspiration (Willmott, 1985) and monthly air temperature (Leemans and Cramer, 1991) gridded at a 0.5 x 0.5 degree resolution.

The seasonal cycle of GPP is determined in the MONTHLYC model by the monthly actual evapotranspiration, $AET(m)$:

$$GPP(m) = \frac{AET(m)}{\sum_{m=1}^{12} AET(m)} GPP_{ann}$$

where GPP_{ann}, the annual GPP, is derived from the Montreal NPP model.

The Montreal NPP model relates annual net primary production (NPP_{ann}, in $gC m^{-2} yr^{-1}$) to annual actual evapotranspiration (AET_{ann}, in $mm yr^{-1}$) (Box, 1988):

$$NPP_{ann} = 1350 \cdot (1 - e^{-0.0009695 \cdot (AET_{ann} - 20)})$$
and GPP_{ann} is derived from NPP_{ann} using the empirical equation (Box, 1988)

$$GPP_{ann} = -1863 \cdot \ln(1 - NPP_{ann}/1350)$$

(6)

that gives

$$GPP_{ann} = 1.8062 \cdot (AET_{ann} - 20)$$

(7)

where 1.8062 is the value characterising the water-use efficiency, WUE, the amount of GPP in gC produced per 1 liter of the water transpired. Hence, the general form of this equation is as follows:

$$GPP_{ann} = WUE \cdot (AET_{ann} - 20)$$

(8)

The monthly values of R_a in the MONTHLYC model are proportional to $Q_{10}^{T(m)-10}$ ($Q_{10} = 2$):

$$R_a(m) = \frac{T(m)-10}{Q_{10}^{10}} \frac{Q_{10}^{T(m)-10}}{\sum_{m=1}^{12} Q_{10}^{T(m)-10}} R_{a,ann}$$

(9)

where $T(m)$ is monthly air temperature and $R_{a,ann}$ is the annual autotrophic respiration calculated as the difference between GPP_{ann} and NPP_{ann}:

$$R_{a,ann} = GPP_{ann} - NPP_{ann}$$

(10)

The monthly values of heterotrophic respiration from each litter pool depend in the MONTHLYC model on the rates of litter decay and the storage of litter:
\[R_{h,i}(m) = r_i(m)s_i(m) \]

(11)

where the monthly values of decay rates are proportional to monthly values of AET:

\[r_i(m) = \frac{AET(m)}{\sum_{m=1}^{12} AET(m)} r_{a,i} \]

(12)

and \(r_{a,i} \) depends on the annual amount of AET (Box, 1988) as follows:

\[r_{a,i} = r_{0,a,i} \cdot 10^{-1.4553+0.0014175 \cdot AET_{ann}} \]

(13)

The monthly values of litter storages satisfy in the MONTHLYC model the following difference equations:

\[s_i(m+1) = s_i(m) + p_i(m) - R_{h,i}(m) \]

(14)

where \(p_i(m) \) is the input of organic matter to the \(i \)-th pool of litter. They are found by iterations.

Up till now all of the modelling formulation directly follows Box (1988). Modifications that I introduced to the MONTHLYC model were as follows.

Whereas Box (1988) used 3 litter pools: above-ground true litter (mostly leaves), root litter, and large woody debris (deadfall), I instead use two pools: the pool of slowly decaying fractions and the pool of quickly decaying fractions. The annual heterotrophic respiration is, thus, divided into heterotrophic respiration related to slowly decaying fractions of litter (\(R_{h,s} \)) and that related to quickly decaying fractions (\(R_{h,q} \)). The adequacy of this approach is discussed in the Appendix A1.

The seasonal changes in the storage of slowly decaying litter are small in comparison to its average value, and so the seasonal cycle of \(R_{h,s} \) reflects that of the rate of decay, which is assumed to be proportional to \(AET(m) \):
\[R_{h,s}(m) = \frac{AET(m)}{\sum_{m=1}^{12} AET(m)} R_{h,s,ann} \quad (15) \]

and

\[R_{h,s,ann} = (1 - \phi) NPP_{ann} \quad (16) \]

where \(\phi \) is the share of quickly decaying fractions in the litterfall, and \(R_{h,s,ann} \) is the part of heterotrophic respiration related to slowly decaying fractions of litter, which in the case of de-trended carbon cycle is equal to the corresponding part of \(NPP_{ann} \).

The storage of quickly decaying fractions is sensitive to the seasonal pattern of litterfall. Since deciduous trees shed leaves in the end of growing season, the part of heterotrophic respiration which is related to quickly decaying fractions may depend on the substrate availability. The seasonal changes in the storage of quickly decaying fractions of litter \((s) \) are modelled here by the ordinary differential equation:

\[\frac{ds}{dt} = -r(t)s \quad (17) \]

where \(r(t) \) is the rate of litter decay, and \(t \) is the time elapsed since the end of growing season. The function \(r(t) \) is a periodical continuous function, \(r(t + 12) = r(t) \), the average value of which during the month \(m \) is proportional to monthly values of AET:

\[\int_{m-1}^{m} r(t)dt = \frac{AET(m)}{\sum_{m=1}^{12} AET(m)} \int_{0}^{12} r(t)dt \quad (18) \]

If litterfall occurs only in the end of growing season, then \(s(0) = s(12) + p \), where \(p \) is equal to \(\phi \cdot NPP_{ann} \). In this case,
\[s(n) = \frac{\phi \cdot NPP_{ann}}{12} e^{-\int_0^n r(t) dt} - \frac{1}{e} \int_0^n r(t) dt \] \tag{19}

where \(n \) is the number of months elapsed since the end of growing season.

The storage of quickly decaying litter in a given month \(m \) is calculated using the equation

\[S(m, m_0) = \frac{\phi \cdot NPP_{ann}}{m_0 + 12} e^{-\int_{m_0}^m r(t) dt} - \int_{m_0}^m r(t) dt \] \tag{20}

where \(m_0 \) is the last month of the growing season and \(m \geq m_0 \). If \(m < m_0 \), then \(S(m, m_0) \) is calculated as follows:

\[S(m; m_0) = \frac{\phi \cdot NPP_{ann}}{m_0 + 12} e^{-\int_{m_0}^{m+12} r(t) dt} - \int_{m_0}^{m+12} r(t) dt \] \tag{21}

Consequently, heterotrophic respiration related to decomposition of quickly decaying litter is calculated using the following equations:

\[R_{h,q}(m) = S(m - 1; m_0) - S(m; m_0) \] \tag{22}

where the geographic distribution of \(m_0 \) is derived from the assumption that the growing season in the deciduous forests of Northern Hemisphere normally ends when monthly air temperature goes below 10°C (that is, in September or October), and that in some other ecoregions,
the end of growing season may occur due to the lack of precipitation, e.g., when monthly AET

$GPP, R_a, \text{ and } R_h$ are the major drivers of the seasonal changes in the atmospheric carbon

storage. The amplitude of seasonal changes in the carbon exchange between the atmosphere

and the ocean is relatively small (e.g., Chen, 2011). The same can be said about the seasonal

changes in the emissions from fossil fuels burning. Hence, one could assume that $N_{a, mod}(m) =$

$-GPP(m) + R_a(m) + R_{hh,s}(m) + R_{hh,q}(m)$, may give a good approximation of $N_a(m)$ under

some choice of ϕ, WUE and Q_{10} values. This assumption was tested by numerical experiments.

The results are discussed below.

3 Results and Discussion

The global monthly GPP calculated using Eqs. (4-7) has a peak when N_a has a dip (Figs. 1-2),

supporting the view that seasonal cycle of the globally averaged atmospheric CO$_2$ concentration

reflects the seasonality of plant activity (Keeling et al., 1996). The effect of GPP is reduced,

however, by autotrophic respiration (R_a) that has a peak at the same month as GPP. The part

of the heterotrophic respiration that results from the decay of slowly decaying fraction of litter

($R_{hh,s}$) also has a peak at the same month as GPP. Consequently, the amplitude of the seasonal

changes in $N_{a, mod}$ could be very narrow if compared to that of N_a (Fig 3).

The discrepancy between the amplitude of the seasonal changes in $N_{a, mod}$ and that of N_a

can be reconciled by increasing WUE, decreasing Q10 and increasing ϕ. The 'true' values of

these model coefficients are not known, but they should fall within empirically established,
or

widely accepted, bounds. Jasechko et al. (2013) estimated the global WUE of the terrestrial

biosphere to be 3.2 ± 0.9 mmol CO$_2$ per mol H$_2$O, that corresponds to the range from 1.5 to

2.7 gC per liter of water and suggests that 2.7 gC per liter of water can be taken as the highest

possible estimate of WUE. Zhao and Running (2011) used 1.4 as the lowest possible estimate

of Q10. The highest possible estimate of ϕ cannot exceed the share of herbaceous fractions

in the litterfall, that varies from 0.3 in forests to 0.9 in grasslands (Esser, 1984). Parton et al.

(1987) divided herbaceous litter into the pool of structural C, the residence time of which is 3
years, and the pool of metabolic C, the residence time of which is 0.5 year. Hence, the highest possible estimate of ϕ cannot exceed the share of herbaceous fractions in the litterfall multiplied by the share of metabolic C compounds in the herbaceous litter. The latter depends on lignin to nitrogen ratio, and thus could be very small in evergreen needleleaf forests. Moreover, Parton et al. (1987) assumed that only 55% of carbon are released to the atmosphere in course of fresh litter decomposition, whereas 45% go to the pools of soil organic matter. Thus, the possible values of ϕ could range from 0.1 to 0.3 depending on the share of land covered by grasslands and broadleaf forests. Numerical experiments show that the amplitude of the seasonal changes in $N_{a,mod}$ can be roughly of the same width as that of N_a under some values of WUE, Q10 and ϕ that fall within bounds mentioned above (Fig 4).

This result demonstrates that amplitude of the seasonal cycle of the globally averaged monthly concentrations of carbon dioxide reported by NOAA/ESRL could be simulated with a carbon cycle model. The simplicity of the model, which is used in this study, may raise doubts on its validity. Although the doubts of this sort are difficult to dispel due to the lack of standardized tools needed for adequate model evaluation (Alexandrov et al., 2011), the usage of the model could be legitimated as follows.

The purpose of the study is to understand behaviors of more complex models. Model complexity poses an obstacle for diagnosing the sources of discrepancy between model predictions and observations. Xia et al. (2013) show that one can overcome this obstacle by decomposing a complex model into traceable components. Another approach is to use minimal models, that is, the models of reduced complexity which are designed to explain only certain aspects of a system (Evans et al., 2013). Many aspects of complex model behaviors are beyond the scope of this study. Among them are the increasing amplitude of the seasonal changes in the globally averaged monthly concentrations of carbon dioxide (Graven et al., 2013) and the spatial distribution of soil carbon (Todd-Brown et al., 2013). The version of the MONTHLYC model is used as a minimal model, that is, merely to explore the factors that affect the amplitude of seasonal changes in N_a.

One of these factors is substrate limitation that may be caused by the shift between the phase of NPP seasonal cycle and the seasonal cycle of litterfall production. The models and submodels
of litterfall production (e.g., Randerson et al., 1996; Potter et al., 1993; Box, 1988; Esser, 1987; Ito and Oikawa, 2002; Eliseev, 2011) often deal with such components as coarse woody debris, fine woody debris, leaf debris and so on. In this study all litter components were aggregated in two pools: slowly decaying fractions and quickly decaying fractions. The conceptual validity of this approach is explained in the Appendix A1. The pool of quickly decaying fractions is assumed to be refilled once per year (Fig 6) and depleted in summer. During the period of the pool depletion heterotrophs decomposing quickly decaying fractions become substrate-limited. This causes a decrease in monthly heterotrophic respiration below that expected from a model that does not take into account the effects of substrate availability. The decrease, which is referred to as substrate limitation (Randerson et al., 1996), depends on the share of quickly decaying fractions in the litterfall. Hence, the share of quickly decaying fractions in the litterfall is one of the parameters of the complex models of carbon cycle which are responsible for the amplitude of the simulated seasonal changes in N_a.

Another important factor is the annual magnitude of the terrestrial GPP. Beer et al. (2010) estimated it at 123±8 GtC/year. This estimate is close to the estimate that can be obtained with the MONTHLYC model for the original setting of WUE: Eq. (7) gives 129 GtC/year. If WUE is set at 2.7 gC/l, Eq.(8) gives 193 GtC/year. The highest possible estimate of the terrestrial GPP could be assessed using the Osnabruck collection of data on Net Primary Production (NPP) (Esser et al., 2000). The analysis of these data implies (Alexandrov et al., 1999) that the 90% confidence interval for the estimate of the terrestrial NPP is 52-81 GtC/year. Taking that GPP is often estimated by doubling NPP, one may conclude that the highest possible estimate of the terrestrial GPP should not exceed 160 GtC/year. The annual magnitude of the terrestrial GPP, perhaps, need not be set at 193 GtC/year in more complex models where WUE may vary depending on the vegetation type and the phase of the growing season. The case study of the model application to the Fluxnet data (Appendix A2) shows that setting WUE at constant value over the whole year may underestimate GPP in the beginning of the growing season. Numerical experiments also show that most seasonal changes in N_a can be attributed to seasonal changes in NEE in the ecosystems located to the north from 25N. Hence, one need not increase WUE
of raingreen forests to increase the amplitude of $N_{a,mod}$: it seems that underestimated is the productivity of Northern Hemisphere deciduous broadleaf and mixed forests.

4 Conclusions

The amplitude of seasonal changes in the globally averaged atmospheric CO$_2$ concentrations characterizes an important aspect of the global carbon cycle. The fact that a complex carbon cycle model cannot reproduce it (Chen, 2011) raises the question about the adequacy of this and other models. Complexity makes it difficult to trace a model inadequacy back to its source. Therefore, the model which is used in this study omits many important details in sake of conceptual clarity. This allows us to reveal potential shortcomings. The low amplitude may result from underestimated annual magnitude of GPP in the terrestrial ecosystems located to the north from 25N and from underestimated effect of substrate limitation. The effect of substrate limitation could be lost if model structure does not include the pool of litterfall fractions which are decomposed within a year. Such deficiency can be corrected through modelling the seasonal pattern of the herbaceous litterfall and estimating the share of quickly decaying fractions in the herbaceous litterfall. As to the possible underestimation of GPP, this is a problem that cannot be resolved without re-analysis of all available data on GPP and NPP.

A1 Aggregation of litter pools

The model adequacy cannot be assessed without due regard to the context within which the model is used. The complexity of a detailed model can be significantly reduced if the model is applied to the ecosystem where the annual mean of the carbon stock in each carbon pool is constant. The carbon flow through the pools can be represented as a stationary Markov chain in such case. The pools correspond to the states of the Markov chain. The probability of single-step transition from state j to state i is equal to

$$q_{ij} = \frac{f_{ij}}{\sum_{i=1}^{n} f_{ij}}$$
where f_{ij} is the carbon flow from the j-th pool to the i-th pool.

The average time that carbon which is residing in the j-th pool spends in the i-th pool before returning to the atmosphere is determined as follows (Logofet and Alexandrov, 1984):

$$t_{ij} = \frac{x_i}{\sum_{j=1}^{n} f_{ij}} \tilde{q}_{ij}$$

where x_i is the steady-state carbon stock in the i-th pool, and \tilde{q}_{ij} is the element of the matrix $(I - Q)^{-1}$, where I is the identity matrix and $Q = (q_{ij})$.

The seasonal depletion of the carbon stock can be significant in the pool where

$$\frac{x_i}{\sum_{j=1}^{n} f_{ij}} < 1$$

if the sum of the all inputs to this pool undergoes severe seasonal changes. Such pools can be aggregated into a pool of quickly decaying organic matter, and the other pools can be aggregated into the pool of slowly decaying organic matter with little loss of accuracy.

For example, let us consider the Century model (Parton et al., 1987). The Century model incorporates 5 pools of carbon: metabolic C, structural C, active soil C, slow soil C, and passive soil C. The residence time of metabolic C is less than 0.5 year. The residence times of other pools are greater than 1.5 year (25 years in the case of slow soil C, and 1000 years in the case of passive soil C). Hence, significant seasonal depletion of carbon stock may occur only in the pool of metabolic C. Other pools may be aggregated into the pool of slowly decaying organic matter. The aggregation will have no effect on the seasonal changes in the heterotrophic respiration from these pools if the monthly rates of decay are proportional to monthly AET:

$$R_{h,s}(m) = \sum_{i=2}^{5} \frac{AET(m)}{\sum_{m=1}^{12} AET(m)} r_{a,i} s_i = \frac{AET(m)}{\sum_{m=1}^{12} AET(m)} \sum_{i=2}^{5} r_{a,i} s_i = \frac{AET(m)}{\sum_{m=1}^{12} AET(m)} r_{a,s} s_s$$

where
\[s_s = \sum_{i=2}^{5} s_i; r_{a,s} = \sum_{i=2}^{5} r_{a,i} \frac{s_i}{s_s} \]

A2 Explaining the seasonal cycle of NEE at a Fluxnet site

The data on seasonal changes in NEE (Net Ecosystem Exchange) observed at Fluxnet sites (Falge et al., 2005) allows us to see whether the model applied at the global scale can reproduce the seasonal cycle of local NEE. The results of simulations for the “Hesse Forest” site (HE99_dc_u0_mm.flx), presented at the Figure 7, show that the model can reproduce the large part of the amplitude of the NEE seasonal cycle if the model coefficients are set at the values that are used to reproduce the seasonal cycle of the globally averaged CO₂.

Acknowledgements. The research received financial support from the Russian Foundation for Basic Research, grant No 13-05-00781. The author also acknowledges intellectual support received from Alexey Eliseev, Nikolay Zavalishin, Maxim Arzhanov and Kirill Muryshev and highly appreciates the comments made by Ning Zeng and Ralph Keeling on earlier versions of this paper. Appendices were added in response to the valuable comments of two anonymous reviewers.

References

Fig. 1. Seasonal cycle of the de-trended net carbon exchange between the atmosphere and other pools (N_a) in 1995-2005.
Fig. 2. Seasonal cycle of the Gross Primary Production (GPP) as calculated using Eqs. (4-7).
Fig. 3. The seasonal cycle of $N_{a, mod}$ (green) for WUE=1.8 gC/l, Q10=2.0, and $\phi = 0$, as compared to N_a (blue).
Fig. 4. The seasonal cycle of $N_{a,mod}$ (green) for WUE=2.7 gC/l, Q10=1.4, and $\phi = 0.2$, as compared to N_a (blue).
Fig. 5. The part of the seasonal cycle of the de-trended atmospheric carbon storage that could be attributed to the net exchange between the atmosphere and the terrestrial part of the biosphere (green) as compared to the total (blue).
Fig. 6. The month at which deciduous trees supposedly shed leaves due to the end of growing season.
Fig. 7. The seasonal cycle of the local $N_{a,\text{mod}}$ (green) for WUE=2.7 gC/l, Q10=1.4, and $\phi = 0.2$, as compared to the observed de-trended NEE at the "Hesse Forest" site of Fluxnet (blue).