Responses to the Editor’s Review

Thank you for the additional comments and suggested edits. We found these comments very helpful and the clarity of the revised manuscript has been much improved. We have addressed all the comments below and made revisions to the manuscript accordingly. The Editor’s comments are italicized and following our responses we include a copy of the manuscript with the revised text highlighted.

Note we have also modified the title to be simpler and clearer while keeping the suggestion of reviewer Ivan Janssens to include the model name in the title.

The authors have made a number of useful changes in response to the two reviewers. Nevertheless, a few changes requested by the reviewers have not been made so far, and a few other changes have worsened the manuscript. Nevertheless, after some additional minor changes I consider the manuscript as well worth publishing.

M1) Reviewer #1, comment 34 asked for explaining the meaning of L1, L2, ... etc. in Fig 1 – I guess this are the different soil pools of CLM. This needs to be explained in the Figure caption.

We edited this figure to improve its quality and readability. As a part of this reworking we explicitly define the pools in the corresponding panels instead of using the abbreviations. We direct the reader to these labels in the caption.

M2) Reviewer #2, comment 4, asked to “provide a table with mean residence time, activation energy and final temperature sensitivity for each pool”. This comment is made on the background that section 2.2.1 was not – and is still not (see my comments below) – well understandable. As far as I understand, your “standard” CLM version is run with a Q10 model. Accordingly, the information requested by the reviewer can refer only to your new model with modified temperature dependence, but the request for making the parameter values chosen precise remains valid. So please add this information and explain the origin of your parameter values.

We largely rewrote section 2.2.1 and now include a new table (Table 1) that includes the values requested by the reviewer and editor. We followed the suggestion of the reviewer to fit new Q10 coefficients to the modified decomposition rates and now include these in the new Table 1. Table 1 caption:

“Table 1: Values for the parameters used in the calculation of the temperature sensitivity of decomposition rates for this study (Eq.4). Turnover times for all carbon pools are from Thornton and Rosenbloom (2005) and are the same as those used in CLM4. Activation energies are computed using the linear fit given by Knorr et al. (2005) in their Figure 2. A least-squares, best-fit Q10 coefficient is given for each of the modified decomposition rates, k_{mod(T)}.”
M3) Reviewer #2, comment 5, asked for a more detailed description on how you arrive from the study by Garcia-Pausas and Paterson (2011) at your priming parametrization. Despite your changes in section 2.2.2 such a detailed description on how you derived your parameters a and b from the experimental results of Garcia-Pausas and Paterson (2011) is still missing.

We have largely rewritten this section and now provide a more detailed description of how we fit the two constants in the priming equation. From Section 2.2.2:

“They found that the SOM-derived CO₂-C efflux from soils increased by roughly 25% with the addition of the glucose. Here we modified the SOM decomposition scheme in CLM to account for up to a 25% increase in decomposition rate from an input of C from the litter pools.”

and

“This relation was described with a continuous function that asymptotes to the maximum proportional increase in decomposition rate (25%) and is added to the potential C flux from decomposition of SOM (C_p):

\[C_{p-mod} = C_p \left[1 + a \left(1 - e^{(-bF_{litter}/F_{soil})} \right) \right] \] (5)

where a and b are constants, here a=0.25 (maximum proportional increase) and b=0.1291, and C_{p-mod} is the modified potential C flux from decomposition. The parameter b was fitted such that the function nears the maximum proportional increase, a=0.25, for a ratio of F_{litter} to F_{soil} that corresponds roughly to the ratio of C added through the glucose treatments to the soil C efflux in the experiments of Garcia-Pausas and Paterson (2011). Here we assume that the effect of increasing the amount of added substrate levels off near the highest glucose concentration added in their experiments.”

Insufficient changes:

I1) Both reviewers were dissatisfied with the presentation of the modified model for the temperature dependence of SOM turnover in section 2.2.1 (Reviewer #1, comments 12 and 13; reviewer #2, comment 4). In my opinion the presentation in the revised manuscript has even worsened. Since the paper crucially depends on this parametrization, the paper will be publishable only if this section is well understandable. In principle I like the step-by-step introduction of the final respiration rate as presented in the original manuscript. I guess the second formula there was simply wrong so that the full section could not be understood. The presentation in the revised manuscript is even less understandable since a final formula for the modified decomposition rate is missing. Moreover, the meaning of the “conversion factors” remains elusive, since “conversion” means a transformation into an equivalent representation, but you are introducing a non-equivalent new formulation. The request of reviewer #2 to “write down a full equation for kmod” remains desirable. And please keep remark M2 from above in mind.
As mentioned above, we rewrote most of this section keeping in mind this comment from the editor and the reviewers suggestions as well. We return to the more step-by-step presentation of the equations in the Discussions MS but have changed some of the notation in the equations from the original to improve clarity. To go along with these changes the text has been re-written to better communicate each modification to the original equation, why it was made and what the results are. Since these changes to the text are extensive we do not reproduce them here in our responses but direct the editor to the new Section 2.2.1 below in the revised text.

12) Reviewer #2, comment 5, asks explicitly on how the equation for priming is applied and suggested several possibilities. You made some additions/changes to that particular paragraph 2.2.2 on priming, but it still remains unclear how the central equation 4 is applied. Since the paper crucially depends on this parametrization the paper cannot be published without a clear presentation of this new priming model. To be more precise: What I do not understand is what “increase in SOC flux” should mean. Do you add this flux to the decomposition flux of the standard model? In that case the parameter “a” should not be simply equal 0.5, but must have units like e.g. mole(C)/m^2s. In Fig. 2 you call this same “increase in SOC flux” as “fraction increase in SOC mineralization”. Besides the fact that designations should be identical, this is as well not understandable: what means “fraction” here? Obviously the model description in 2.2.2 is incomplete. – Indeed, the idea of using the litter(C) to soil(C) ratio as a measure for priming is interesting so that it is well worth to be clear here. But your description seems rather incomplete. E.g. CLM has several litter pools and several soil pools. So which litter pool is relevant for what soil pool in respect to priming? And why do you take the litter pool size for priming and not the litter loss flux?

We have made major edits to this section (2.2.2) including to the equation that describes our estimate of priming and its implementation in CLM. As with section 2.2.1, the edited text is lengthy and therefore we direct the editor to section 2.2.2 of the edited manuscript text below our responses for a general read through of the changes. We address the specific comments here.

The increase in C flux from soils from priming is set up here as a proportional, or percentage, increase in the potential C flux predicted by CLM. In the explanatory text in section 2.2.2 we now refer to this increase as a “proportional” increase and use units of percentage when describing a discrete proportional increase. In addition, the priming equation now shows explicitly how we are adding the priming decomposition enhancement to the model potential C flux:

\[C_{p-mod} = C_p \times \left[1 + a \times \left(1 - e^{-b(F_{litter}/F_{soil})} \right) \right] \]

(5)

Where \(C_{p-mod} \) and \(C_p \) are the modified and unmodified soil pool decomposition rates, and \(F_{litter} \) and \(F_{soil} \) are the total, unmodified, C loss flux from all litter pools and all soil pools, respectively. The new text provides a better explanation of how we choose
the maximum proportional increase in decomposition rate (a) and the $F_{litter}:F_{soil}$ ratios used to fit the parameter b. The labels on Figure 2 have been updated to reflect these improvements and be consistent with the quantities as described in the main text.

That we do use the litter loss flux and not litter pool size has been made clearer by the definition and use of F_{litter} and F_{soil}. And we now state in our definition of these variable names that they are the total loss fluxes from all litter or soil pools.

13) As requested by both reviewers you have added Figs. 4b and 4d, that, if I understand them correctly, show the results of your simulations in reference to the ISRIC-Wise data. Nevertheless, several issues remain unclear here:

1. Please reformulate the legend such that it gets understandable what positive and negative values mean (simply saying that you take a difference is not sufficient).

2. You write in the legend “with added priming effect": Does this mean an experiment where in addition to the modified temperature dependence also priming is considered? To prevent such inaccuracies you could from the outset introduce names for your experiments (e.g. ES for standard, ET with T-modification, EP with priming, ETP with both) and then write explicitly which difference you plot (e.g. ET–ES). In a similar spirit you could name observations as “O” and write for Fig. 4b: ET-O.

We use the suggestion from comment #2 to address both these issues. First, the recommended short-hand notation for the different model experiments is introduced at the beginning of Section 2.3 (Simulation Protocol):

“We tested the sensitivity of global C stocks to these changes in the decomposition rates in CLM experiments using the standard, unmodified model (referred to as ES), the model including the modified temperature sensitivity of decomposition (referred to as ET), and the model including the modified priming effect on decomposition (referred to as EP). Initially, equilibrium simulations were performed with CLM for ES, ET, and EP, to assess the impacts of the modified decomposition treatments on steady-state model C stocks.”

We also note that we refer to the WISE dataset as “OBS” in the Tables and Figures (see the first sentence of section 3). Next we added the explicit arithmetic used to create the panels in Figure 4 to the figure legend. This simplified the legend text as well as making the exact operation used explicit. To assist the reader further we kept in the last sentence that identifies exactly what the positive and negative signs mean for panels (b) and (d):

“Figure 4: Difference in SOC at equilibrium between ET and ES \{ET – ES\} (a), between EP and ES \{EP – ES\} (c), and the change in error in SOC predictions with respect to the
observations due to the modified temperature sensitivity \(|OBS - ES| - |OBS - ET| \) (b), and due to adding priming \(|OBS - ES| - |OBS - EP| \) (d). Positive values in (b) and (d) indicate the modification to the model improved prediction of SOC compared to the observations.

We use the new short-hand to make minor changes to Tables 1 and 2, and the legends for Figures 3, 5 and 6.

3. I do not understand why the differences in Fig. 4b are so small: As can be seen from Fig. 4a the values from the experiment ET differ from ES by less than 1kgC/m^2. This is much less then the difference of the standard model to the observations (up to more than 20kg/m^2 at high latitudes; see Fig. 3b). Therefore, if I understand correctly what Fig 4b should show, namely ET-0, it should show also high values up to 20kg/m^2. Please check this.

This confusion should be cleared up by our revisions in response to the Editor's above comments #1 and 2. Since the difference between ET and ES was so small, ET-OBS appeared identical to ES-OBS when plotted. Therefore we plot the change in the differences (as defined now in the revised Figure 4 caption) and use the absolute values so we can fix the sign of change that brings the model output closer to the OBS as positive. This is much clearer now after addressing your previous comments as well.

4. The units at the scales must be “kgC m^-2” instead of “kgC m+2”.

Thank you for catching this mistake, we have corrected the units.

Additional comments

A1) I do not understand Fig. 2:

1. I guess the figure shows equ. 4 for your chosen parameters. In that case this equation should be referenced in the caption. And if so, I do not understand why the function converges to 0.25: Because a=0.5 (see p. 7 line 1) I expect that function to converge to 0.5.

This was a typo in the text which we have corrected (correct: a=0.25). We rewrote the figure caption to clarify what is plotted. It now reads:

“Figure 2: Plot of the proportional increase in decomposition rate of all soil pools, given as percentages, due to priming from an influx of C from the litter pools, computed from Eq. 5. The changes in rates are plotted as a function of the ratio of the sum of the unmodified potential C loss fluxes from all litter pools, \(F_{\text{litter}} \), to the sum of the unmodified potential C loss fluxes from all soil pools, \(F_{\text{soil}} \).”
2. As already requested by Referee #1, comment 35, the legend should be improved. I guess the x-axis shows litter/SOC as showing up in eq. 4. If so, the same designations should be used in the formula and the legend.

3. Why do you write in the legend “maximum C flux”? Shall I consider this as an indication that your presentation of the priming parametrization in section 2.2.2 is incomplete?

The legends have been rewritten and now are consistent with the improved text:

X-axis: \(F_{\text{litter}}:F_{\text{soil}} \)

Y-axis: Proportional increase in SOM decomposition rate [%]

A2) Figure 3:

1. In Fig 3 the units at the scales must be “kg C m\(^{-2}\)” instead of “kg C m\(^{+2}\”).

This mistake has been corrected.

2. Please make also clear in the caption the meaning of the sign of the differences shown.

As in the revised caption for Figure 4 we followed your suggestion and used the new experiment shorthand to include the exact equation used to create the plot. This amounted to adding “\(\{\text{OBS – ES}\}\)” to the caption.

A3) Table 1: Please refer in the caption to equation 5 because this is used to derive the ISRIC-WISE total soil organic carbon.

We now make reference to Eq. 5 in the Table caption “...using the Eq. 5 unit conversion,...”

A4) Page 4, lines 29/30: Incomplete sentence.

We have addressed this by removing the phrase “structured as a converging cascade” that made the sentence awkward.

A5) Page 5, lines 24/25: Definition is wrong: “A” is the decomposition rate for \(Ea=0\), not for \(T=0\).

Thank you for catching this, we have corrected it.

A6) Page 5, lines 26-28: Please consider reformulation of these two sentences
starting both with “we wanted”.

We have rewritten these sentences to improve readability. It now reads

“We used this methodology to modify the standard Q\textsubscript{10} model temperature sensitivity (k_{mod}) while retaining the shape of the temperature response”

And further down:

“In addition, we modified the term in the exponent from Eq. 3 to equal zero when the pool temperature equals 15°C, or roughly the global average temperature, by multiplying by the factor $(T-T_{15})/T_{15}$ where T_{15} is $T=15°C$.”

This sentence and the following sentence were rewritten for clarity while also addressing the comment:

“The model generates SOC as a stock in each grid cell, while the ISRIC-WISE dataset gives SOC as a percentage of soil mass in each map unit within a grid cell. Therefore we converted the observed data to SOC stocks with the following expression:”

A8) Page 8, lines 14-16: I guess that Cp is the value from the ISRIC-WISE date. Please make this explicit.

This change was made.

A9) Page 8, equation (5): This is a conversion to g/m2. But you never use this. Instead you display in the figures SOC in kg/m2. So please be consistent.

We had changed units in the figures to kg/m2 in response to a reviewer's comment and neglected to change this in the text. Thank you for catching this, we have corrected it.

A10) Page 9 last paragraph and page 10 first paragraph: You repeatedly refer here to figure 4, but you could be more specific by indicating which subpanel you refer to. In addition: please make clear where in the text you refer to the two new plots 4b and 4d.

We largely rewrote these two paragraphs and now include explicit references to all four panels in Figure 4. The new text of the last paragraph on Pg 10 is:

“SOC decreased at most grid points for ET relative to ES, especially in the high latitudes of the Northern Hemisphere (Figure 4a). However, the magnitude of the decrease was small, never exceeding 1 kgC/m2 at any location, compared to the difference in SOC
between the ES results and OBS, which falls between 5 and 20 kgC/m² at many locations (Figure 3). This comparison is made even clearer in Figure 4c, which shows how the difference between the model and observations changes when the modified temperature sensitivity is included in the simulation.

A11) Page 10, lines 8-11: You write: “This suggests that inclusion of priming effects in ESMs may be useful in refining model predictions, particularly in resolving relationships between plant productivity, turnover and equilibrium SOC stocks.” I do not see how you can reach this conclusion from what you state in the previous sentence, namely that “predictions” got better for some regions, but worse for others. So please make this more clear or drop that sentence.

We took this advice and dropped the sentence entirely as part of several other edits to this paragraph for clarity.

A14) Page 14, Line 12: Typo “climatecarbon”.
A15) Page 14: Reference Garcia-Pausas and Paterson: Title is wrong.
A17) Page 17, lines 26-30: The two references need to be separated. And the location for the MPI report is Hamburg not Potsdam.
A18) Page 18, lines 8-13: The two references need to be separated.
A19) page 18, lines 18-23: This is a single reference.

These edits have all been made.
The sensitivity of carbon turnover in the Community Land Model to modified assumptions about soil processes

B. Foereid1*, D. S. Ward1, N. Mahowald1, E. Paterson2 and J. Lehmann1

[1]{Cornell University, Ithaca, New York}

[2]{The James Hutton Institute, Aberdeen, United Kingdom}

[*]{now at: University of Abertay Dundee, United Kingdom}

Correspondence to: B. Foereid (1307280@live.abertay.ac.uk)

Abstract

Soil organic matter (SOM) is the largest store of organic carbon (C) in the biosphere, but the turnover of SOM is still incompletely understood and not well described in global C cycle models. Here we use the Community Land Model (CLM) and compare the output for soil organic C stocks (SOC) to estimates from a global data set. We also modify the assumptions about SOC turnover in two ways: 1) We assume distinct temperature sensitivities of SOC pools with different turnover time and 2) We assume a priming effect, such that the decomposition rate of native SOC increases in response to a supply of fresh organic matter. The standard model predicted the global distribution of SOC reasonably well in most areas, but it failed to predict the very high stocks of SOC at high latitudes. It also predicted too much SOC in areas with high plant productivity, such as tropical rain forests and some mid-latitude areas. Assuming that the temperature sensitivity of SOC decomposition is dependent on the turnover rate of component pools reduced total SOC at equilibrium by a relatively small amount (<1% globally). Including a priming effect reduced total global SOC more (6.6% globally) and led to decreased SOC in areas with high plant input (tropical and temperate forests), which were also the areas where the unmodified model overpredicted SOC (by about 40%). The model was then run with climate change prediction until 2100 for the standard and modified
versions. Future simulations showed that differences between the standard and modified versions were maintained in a future with climate change (4-6 Pg and 23-47 Pg difference in soil carbon between standard simulation and the modified with temperature sensitivity and priming respectively). Although the relative changes are small, they are likely to be larger in a fully coupled simulation, and thus warrant future work.

1. Introduction

Soil organic matter (SOM) is the largest store of organic carbon (C) in the biosphere (Batjes, 1996). Even relatively small percentage changes in this store can lead to large changes in atmospheric CO\textsubscript{2} concentrations. However, there is still large uncertainty associated with the response of SOM dynamics to perturbations such as changes in temperature, moisture and plant-derived inputs to soils that are predicted under environmental change (Heimann and Reichstein, 2008; Ostle et al., 2009; Billings et al., 2010; Conant et al., 2011; Zhu and Cheng, 2011). In large part, this uncertainty is a result of incomplete understanding of the complex chemical, physical and biological processes (and interactions) that govern SOM decomposition, and the influence of environmental factors on these processes (Paterson et al., 2009; Subke and Bahn, 2010; Dungait et al., 2012). This has limited the extent to which the processes mediating SOM decomposition have been represented explicitly in models, potentially limiting their accuracy in predicting impacts of environmental change across ecosystems.

Terrestrial models predict fluxes of C and water and more recently also nitrogen (N) and fire in the earth system. Several terrestrial models exist, such as Lund-Potsdam-Jena (LPJ), the Joint UK Land Environment Simulator (JULES) and the Community Land Model (CLM) (Sitch et al., 2003; Best et al., 2005; Oleson et al., 2010). These models can be integrated into Earth System Models (ESMs) to predict the biotic feedback to climate change. ESM studies have demonstrated that climate–carbon-cycle feedbacks over the next century may have a large impact on future CO\textsubscript{2} levels and climate (Cox et al., 2000; Friedlingstein et al., 2001), although this is not true in all simulations (Thornton, 2009). As well as being a tool in climate prediction, ESMs also provide tools for integration of knowledge about the land surface. A comparison of earth system models included in the
Intergovernmental Panel on Climate Change (IPCC) showed that one of the largest uncertainties in predicting biotic feedback to climate change is how the soil will respond (Friedlingstein et al., 2006). The soil response to global warming is a critical parameter in determining future CO$_2$ concentrations and therefore the magnitude of feedbacks to the rate of future climate change (Jones et al., 2003) and represents a large uncertainty in future climate prediction overall, including physical climate effects (Huntingford et al., 2009). Improving the soil part of the model is therefore a priority for earth system modellers.

Soils receive inputs of organic matter from plants via living roots (rhizodeposition) and senescent tissue (litter), whereas the dominant loss is as CO$_2$ from microbial decomposition of these inputs and of native SOM (Yuste et al., 2007; Paterson et al., 2008; 2009; Metcalfe et al., 2011). A large proportion of plant-derived inputs is rapidly mineralised to CO$_2$ (supporting the activities of diverse microbial communities) with the remainder contributing to the stock of SOM, and for soils in equilibrium, balancing the decay of SOM pools. In simulation models, SOM is usually represented as 2-6 pools defined by their respective rates of C turnover. In almost all models the temperature sensitivity of soil organic C (SOC) turnover is assumed to be constant for all pools, irrespective of their mineralization rate, or other factors controlling relative turnover rates (e.g. Jenkinson et al., 1987; Parton et al., 1987; 1988; 1994; Williams, 1990; Li et al., 2000). In addition, SOC content is modelled to increase as a direct function of increasing rates of plant inputs, which makes the implicit assumption that the decomposition rates of individual pools do not affect each other, i.e. that there is no priming (Kuzyakov, 2010). However, in recent years, evidence derived from mechanistic studies of soil processes has challenged the validity of these assumptions. Firstly, some studies have now reported that SOC pools exhibit distinct temperature sensitivities, although this is still debated (Waldrop and Firestone, 2004; Fang et al., 2005; Knorr et al., 2005; Reichstein et al., 2005; Davidson and Janssens, 2006). Differential temperature sensitivity of SOC pools has been interpreted as being consistent with kinetic theory, where reactions with high activation energy (e.g decomposition of relatively recalcitrant SOC) have greater temperature sensitivity (Conant et al., 2011). Therefore, it has been suggested that incorporation of pool-specific temperature sensitivity into models could be approached
through inclusion of an Arrhenius-form equation to modify pool turnover rates (Knorr et al., 2005). Secondly, increased decomposition of native SOM pools in response to fresh inputs from plants (priming effects) has now been demonstrated in many laboratory and field-based experiments (e.g. Fontaine et al., 2003; 2007; 2011; Zhu and Cheng, 2011; Kuzyakov 2010; Paterson et al., 2008, 2011; 2013). It is increasingly recognised that such priming effects are general phenomena intrinsic to plant-soil interactions, but have only recently become reliably quantifiable (Paterson et al., 2009; Kuzyakov, 2010). Plant-mediated decomposition of native SOM is an important means of sustaining plant biomass production, through mobilisation of limiting nutrients from organic forms and may be a key process mediating the balance of ecosystem C-exchange (Paterson, 2003). Therefore, particularly under future environmental conditions where plant growth may be enhanced (e.g. in response to increased atmospheric CO$_2$ concentration) and result in increased inputs of plant-derived organic matter to soil, consideration of priming effects may be necessary for prediction of soil C-dynamics.

Here we carry out a sensitivity study using the Community Land Model (CLM) with both a carbon and a nitrogen cycle (CN) (Oleson et al., 2010; Thornton et al., 2007) to assess the potential global effects of changing the assumptions about temperature sensitivities of SOM pools and the effect of organic matter input on SOC mineralization rate. We assess the effects on a global scale and compare model output to available observational data at the global scale, and conduct simulations using both standard and modified SOM models with predicted climate change.

2. Materials and methods

2.1 Model

All model experiments were conducted with the terrestrial model CLM version 4.0, which simulates photosynthesis, C fluxes and storage, heat and water transfer in soils, and vegetation-radiation interactions (Oleson et al., 2010). The model has been updated to include the N cycle in addition to the C cycle (Thornton et al., 2007; Thornton, 2009). The model is described in detail in the CLM technical description and appropriate papers (Thornton et al., 2007; Thornton, 2009; Oleson et al., 2010).
The SOC sub-model in CLM is described in detail by Thornton and Rosenbloom (2005). The model has three litter pools and four SOC pools with different turnover time, similar to most SOM models. The fraction of plant litter allocated to each of the three litter pools depends on which plant functional type it is from. In addition, woody material is assumed to fractionate before it enters any litter pool, using a fractionation constant (K_{frag}). As the litter pools decompose, a fraction of the C is released as CO$_2$ and a fraction is transformed into the corresponding SOC pool. The SOC pools either mineralize to CO$_2$ or decompose to enter another SOC except the last (and slowest turning over SOC pool) that only mineralizes to CO$_2$. The response of the model to climate change in offline and fully coupled simulations has been explored (Thornton et al., 2007; 2009), and comparisons to detailed observations has been examined (Randerson et al., 2009). A version of this model was included in the Coupled Model Intercomparison Project (CMIP5) analysis prepared in part for the 5th Assessment report of Intergovernmental Panel on Climate Change (IPCC) (Lindsay et al., 2013). The model has also been compared to other fully coupled models (e.g. Arora et al., 2013; Jones et al., 2013).

2.2 Modifications

The model was modified in two ways to assess the effect of other plausible assumptions about soil processes than those currently in the model. These modifications are described below.

2.2.1 Temperature sensitivity of pools

In the standard version of the model, decomposition rates of all soil and litter organic C pools are equally sensitive to temperature, using a Q_{10} formulae ($Q_{10}=1.5$). Knorr et al. (2005) suggested how decomposition rates of pools could be calculated based on Arrhenius kinetics:

\[k(T) = A e^{-\frac{E_a}{RT}} \]

Where k is the decomposition rate, E_a is activation energy, R is the universal gas constant, T is temperature in Kelvin, and A is the theoretical decomposition rate at $E_a=0$. This therefore provides a methodology for how to calculate pool decomposition rates based on theoretical considerations from thermodynamics. We used this methodology to modify
the standard Q_{10} model temperature sensitivity (k_{mod}) while retaining the shape of the
temperature response:

\[k_{mod} = k_{Q10} e^{\frac{-E_a}{RT}} \] \hspace{1cm} (2)

Standard model approximations of \(k(T) \) are based on data from experiments on quickly
decomposing SOC pools. However, Knorr et al. (2005) argued that the decomposition of
slowly decaying SOC is more sensitive to temperature than decomposition in the quickly
decaying pools common to most experiments. Therefore, we modified the Arrhenius
model term in Eq. 2 to be dependent on the turnover time characteristic of each soil and
litter pool, expressed as the difference between the activation energy of the pool and a
standard activation energy (E_{astd}). The sign convention was chosen such that the
temperature sensitivity of \(k \) increases with pool turnover time, as used by Knorr et al.
(2005):

\[k_{mod} = k_{Q10} e^{\frac{(E_a - E_{astd})}{RT}} \] \hspace{1cm} (3)

To be consistent with the conclusions of Knorr et al. (2005) as mentioned above, we use
the activation energy of the fastest decomposing soil pool as the standard in this
expression. Activation energy was calculated for each C pool using the turnover times
from Thornton and Rosenbloom (2005), also used in CLM4, and a linear fit to empirical
activation energy data given by Knorr et al. (2005) (Table 1).

In addition, we modified the term in the exponent from Eq. 3 to equal zero when the pool
temperature equals 15°C, or roughly the global average temperature, by multiplying by
the factor \((T-T_{15})/T_{15}\) where \(T_{15} \) is \(T=15°C \). This ensured that the temperature response of
the model was the same for \(k_{mod} \) and \(k_{Q10} \) at this temperature.

\[k_{mod} = k_{Q10} e^{\frac{(E_a - E_{astd})(T-T_{15})}{RT_{15}}} \] \hspace{1cm} (4)

We computed new decomposition rates for all C pools and temperatures using Eq. 4 and
fitted a new Q_{10} coefficient to the temperature sensitivity of \(k_{mod} \) for each pool (Table 1,
Figure 1). For the quickly decomposing soil 1 pool, used as the standard and was kept
unchanged. The values of Q_{10} increase up to 2.27 in the more slowly decomposing pools (Table 1).

2.2.2 Priming effect

Plants add C to the soil, broadly in proportion to their growth rate. In the standard model, this means that everything else being equal, C contents of soils will increase with increasing plant biomass production. However, there is evidence that input of fresh C can increase the decomposition rate of the C that is already there, through the priming effect (Kuzyakov, 2010). To account for priming of native SOM, we used data from a laboratory incubation experiment (Garcia-Pausas and Paterson, 2011). This experiment used 13C-enriched glucose as a surrogate for plant-derived inputs allowing the mineralisation of native SOM to be quantified by isotopic mass balance (partitioning SOM-derived CO$_2$ efflux from that derived from the added glucose). They found that the SOM-derived CO$_2$-C efflux from soils increased by roughly 25% with the addition of the glucose. Here we modified the SOM decomposition scheme in CLM to account for up to a 25% increase in decomposition rate from an input of C from the litter pools.

CLM calculates a potential C flux from each soil and litter pool that occurs if N is not limiting. We expressed priming as a function of the ratio between the potential C loss flux from all litter pools (F_{litter}) and potential C loss flux from all soil pools (F_{soil}) before priming had been introduced. Priming can then be represented as a proportional increase in the decomposition rate of each soil pool that grows with an increase in the ratio of F_{litter} to F_{soil} and reaches a maximum at a proportional increase in soil decomposition rate of 25%, following the results of Garcia-Pausas and Paterson (2011). This relation was described with a continuous function that asymptotes to the maximum proportional increase in decomposition rate (25%) and is added to the potential C flux from decomposition of SOM (C_p):

$$C_{p-mod} = C_p \left[1 + a \left(1 - e^{-b(F_{\text{litter}}/F_{\text{soil}})} \right) \right]$$

where a and b are constants, here $a=0.25$ (maximum proportional increase) and $b=0.1291$, and C_{p-mod} is the modified potential C flux from decomposition. The parameter b was fitted such that the function nears the maximum proportional increase, $a=0.25$, for a ratio
of F_{litter} to F_{soil} that corresponds roughly to the ratio of C added through the glucose treatments to the soil C efflux in the experiments of Garcia-Pausas and Paterson (2011). Here we assume that the effect of increasing the amount of added substrate levels off near the highest glucose concentration added in their experiments. The behaviour of this function for a range of $F_{\text{litter}}:F_{\text{soil}}$ values is shown in Figure 2. Further experiments have shown that the priming effect does saturate at high substrate addition rates, but sometimes at rates much higher than the maximum used here (Paterson and Sim, 2013). Therefore, the representation of the magnitude of priming effects can be considered conservative. These coefficients are only valid for an initial assessment of the global effects of including priming. If priming were to be permanently included in the model, a more thorough calibration using more data collected under different conditions would be required.

2.3 Simulation protocol

We tested the sensitivity of global C stocks to these changes in the decomposition rates in CLM experiments using the standard, unmodified model (referred to as ES), the model including the modified temperature sensitivity of decomposition (referred to as ET), and the model including the modified priming effect on decomposition (referred to as EP). Initially, equilibrium simulations were performed with CLM for ES, ET, and EP, to assess the impacts of the modified decomposition treatments on steady-state model C stocks. For these equilibrium simulations we used present-day land cover (Hurtt et al., 2006), atmospheric CO$_2$ concentration, and N and aerosol deposition. The terrestrial biosphere was forced from the atmosphere by prescribed temperature, precipitation, solar radiation, wind, specific humidity and air pressure, and data for this analysis were taken from the re-analysis by Qian et al. (2006). A 25-year period (1972-2004) from the re-analysis was cycled throughout the CLM equilibrium simulations. The cycling was continued until the total global drift in net ecosystem C exchange was less than 0.05 PgC/y averaged over a 25-year atmospheric forcing cycle. This “spin-up” procedure required approximately 1000 model years for all cases. The model was simulated at 1.9 degree latitude by 2.5 degree longitude horizontal grid spacing and a time step of 30 minutes.
Additional simulations were carried out with the modified and unmodified SOC model versions to explore how the different models predict future changes in SOC. These simulations were initialized from the final state of the corresponding equilibrium runs, but used transient atmospheric CO\textsubscript{2} and meteorological forcing. Output from the ECHAM5/MPI-OM CMIP3 runs (Roeknner et al., 2006) based on the SRES A1B greenhouse gas projection (Nakicenovic et al., 2000) was used to define future climate anomalies (for the period 2000-2100, relative to the 1948-1972 mean) for the quantities used in the atmospheric forcing (listed above). The climate anomalies are applied to a repeating, 25-year cycle of atmospheric reanalysis (from the years 1948-1972) to create the atmospheric forcing datasets. With this method we retain observed diurnal, seasonal and interannual climate variability into the future even as it is scaled to the predicted future climate trends (Kloster et al., 2012; Ward et al., 2012). Transient atmospheric CO\textsubscript{2} concentrations also follow the SRES A1B scenario for the year 2000 through 2100. In this scenario, CO\textsubscript{2} concentrations increase through the 21st century, exceeding 700ppm by the year 2100. Global N deposition distributions from the year 2000 (Lamarque et al. 2005) were used throughout for all simulations.

2.4 Soil data

Soil data from ISRIC-WISE 05 degree (Batjes, 2005) were used to compare against output from the simulations. The model generates SOC as a stock in each grid cell, while the ISRIC-WISE dataset gives SOC as a percentage of soil mass in each map unit within a grid cell. Therefore we converted the observed data to SOC stocks with the following expression:

\[
C_s = d \times 10 \times \left(1 - \frac{g}{100}\right) \times b \times \frac{C_p}{100}
\]

(6)

Where \(C_s\) are SOC stocks (kg/m2), \(d\) is thickness of soil layer (cm), \(g\) is gravel content (%) \(b\) is bulk density (g/cm3) and \(C_p\) is SOC content (%) from the ISRIC-WISE dataset. The calculation was done separately for the two soil layers in the ISRIC-WISE dataset (0-0.3 m and 0.3-1 m). The SOC content of both layers is summed, and a weighted average of \(C_s\) over the map units was calculated based on fractional area covered by each map unit.
3. Results and discussion

The unmodified CLM predicts about 26% less SOC than estimated from the ISRIC-WISE data set (the ISRIC-WISE dataset is abbreviated as “OBS” in the tables and figures) (Table 2). It should be noted that the data set only has SOC in the top 1 m, so that real SOC storage and underprediction is even higher. The main reason for the underprediction is that the model is unable to predict the very high SOC contents in northern latitudes (Figure 3). This is unsurprising as the model does not include effects of waterlogging, low pH and permafrost on SOC dynamics. However, the model also underpredicts slightly in many other areas. Exceptions are tropical rain forests in Amazonia and Africa and temperate forests in Asia and eastern United States where the model overpredicts SOC (Figure 3). These are all high productivity regions, which suggests that plant productivity is a stronger determinant of SOC in the model than in reality (overall r^2 between net primary productivity (NPP) and the magnitude of the model overprediction of SOC compared to the observed is 0.56). It is also important to note that the standard model does not account for influences of soil texture and structure, which are strong determinants of stabilisation of SOC through constraining the access of decomposers to SOM (von Lutzow et al., 2006; Dungait et al., 2012). This will account for some of the unexplained variability in the distribution of SOC.

Including temperature and priming modifications did not dramatically alter predictions of total global SOC, but did affect the predicted distribution (Table 2; Figure 4). The results do not include litter pools, but the difference in litter pools between the various versions of the model was negligible (data not shown) as is to be expected as the modifications introduced act on SOC pools but not directly on litter pools. While the standard model has been calibrated to reproduce global SOC stocks, the lack of explicit representation of soil processes may limit their capacity to capture spatial variability in these stocks. That is, setting standard model functions to represent global means can reproduce global SOC stocks, but without further modification may not improve prediction of geographical variation. Such spatial variability would be expected where soil and environmental factors affect the relative importance of SOC-accrual and SOC-loss processes, causing
deviation from mean responses on a global scale. In addition, analogously to predicting geographic variation in SOC, modelling impacts of environmental change on global SOC stocks may require more explicit representation of soil processes, as factors such as CO₂ fertilisation, N addition through deposition and/or fertilisation and temperature rise may directly affect the balance of these soil processes.

SOC decreased at most grid points for ET relative to ES, especially in the high latitudes of the Northern Hemisphere (Figure 4a). However, the magnitude of the decrease was small, never exceeding 1 kgC/m² at any location, compared to the difference in SOC between the ES results and OBS, which falls between 5 and 20 kgC/m² at many locations (Figure 3). This comparison is made even clearer in Figure 4c, which shows how the difference between the model and observations changes when the modified temperature sensitivity is included in the simulation.

Including the simple priming effect also reduced global SOC (Table 2, Figure 4b) and by a higher magnitude compared to the reduction from the modified temperature sensitivity. The global decrease results from the representation of priming in EP for which C turnover could only decrease or remain unchanged. Importantly, the land areas where the priming had the greatest effect on SOC were those with high NPP (tropical and temperate forest). These are the same regions where the standard model over-predicted SOC relative to measured data to the greatest extent (Figures 3 and 4d). Including a priming effect improved predictions in these areas by 20-25%, but predictions got worse in lower productivity ecosystems such as grasslands, shrubs, and boreal forests (by 1-9%) (Figure 5). While underprediction in lower productivity regions can be explained by waterlogging and perma-frost, overprediction in high productivity regions can be resolved by better mechanistic predictions of turnover and its dependence on productivity. We suggest that including a priming effect is a credible and mechanistically sound way to improve these predictions in high productivity regions.

The conservative assumption used here was that the maximum change in C turnover from input of plant-derived C is 25%. Although our results indicate where priming effects may be expected to have the greatest impact, the magnitude and geographic variation in these effects may be greater, as changes in SOC turnover of up to 300% have been reported.
Further work should focus on parameterizing how various factors affect the strength of SOC turnover, and evaluate if this further improves predictions of SOC. For example, empirical data are emerging indicating that priming responses can be quantified as soil-specific functions of C-input rate (Paterson and Sim, 2013), are affected by composition of inputs (Ohm et al., 2007), are modified by nutrient availability (Fontaine et al., 2003; Garcia-Pausas and Paterson, 2011), change with soil depth (Fontaine et al., 2007; Salome et al., 2010) and may vary in response to direct and indirect effects of environmental conditions on the biological processes involved (Dijkstra et al., 2010; Thiessen et al., 2013; Ghee et al., 2013). These effects are potentially complex due to interactions between environmental factors and the biological processes mediating element fluxes. For example, plant-derived C enters soil from aboveground litter and rhizodeposition, supplying organic material of differing quality, affecting retention in soil, microbial activity and processes mediated by microbial communities (including priming). The magnitude and relative contribution of above- and below-ground plant-C is affected by a host of factors, including interactions between plant type, temperature and nutrient availability (Metcalfé et al., 2011). Under conditions of high nutrient availability, relative allocation of plant C to roots and mycorrhizal symbionts is reduced (Yuan and Chen, 2010; Grman and Robinson, 2013). However, whether this results in an absolute reduction in C-transfer to soil is dependent on whether the reduction in relative belowground allocation outweighs the impact of increased gross plant productivity (Henry et al., 2005). These interactions, across ecosystem types, require further quantitative study to refine the representation of plant-mediated priming effects in models.

The difference in pool size between the standard and the modified runs is to a large extent maintained into the future (Figure 6, Table 3), although the vegetation pool in EP is reduced early in the future simulation. This may be a result of smaller C stocks in the soil at equilibrium with this modification. That means that there was less N available for mineralisation, and the effect of warming on N mineralisation and availability was therefore less. The difference in pool sizes would potentially have a large effect in a fully coupled simulation, and could therefore mean a different biotic feedback to climate change than current models predict. The predictions of changes to the C cycle under
global change appear to be relatively robust towards the assumptions made about SOC sensitivity to temperature, as differences in pool sizes at equilibrium were maintained (Figure 6, Table 3).

4. Conclusions

Comparison of CLM model simulations to observations suggest an overprediction of soil C in the high productivity regions of mid-latitudes and the tropics, with too little soil C in other regions, especially the high latitudes, as noted elsewhere (e.g. Randerson et al., 2009; Thornton et al., 2009). This differential in the soil C bias in the model can be due to multiple causes, and we explore two of these effects in this paper, temperature dependence and soil priming. We did not explore some potentially important effects specific to high latitudes such as a representation of the inhibition of biological processes in soils subject to permafrost and waterlogging.

The overprediction of C in the high productivity areas indicated that the model underpredicts C turnover when plant input is high, and one way of improving that is to include a priming effect, which does improve the predictions of SOC distribution by 20-25%. Further work should focus on better quantification of priming, and how it depends on external factors, and may also improve our ability to predict biotic feedback to climate change. In this paper we also explored the impact of different temperature sensitivity of C pools, but this mechanism had less of an effect in most areas.

As soil C feedbacks in earth system models are some of the most important uncertainties in future climate predictions (Huntingford et al., 2009), further work should focus on better quantification of the priming effect and how it depends on other factors and how this can improve predictions of SOC distribution even further.

Acknowledgements

The lead author was supported by a grant from NASA-USDA (No. 2008-35615-18961). The use of computing resources at NCAR is gratefully acknowledged.
References

Batjes, N. H.: ISRIC-WISE global data set of derived soil properties on a 0.5 by 0.5 grid (version 3.0), ISRIC – World Soil Information, Wageningen, 2005.

Lamarque, J.-F., Kiehl, J., Brasseur, G., Butler, T., Cameron-Smith, P., Collins, W. D.,
Collins, W. J., Granier, C., Hauglustaine, D., Hess, P., Holland, E., Horowitz, L.,
Lawrence, M., McKenna, D., Merilees, P., Prather, M., Rasch, P., Rotman, D., Shindell,
D., and Thornton, P.: Assessing future nitrogen deposition and carbon cycle feedbacks
using a multi-model approach: Analysis of nitrogen deposition, J. Geophys. Res., 110,
D19303, 2005.

Lindsay, K., Bonan, G., Doney, S., Hofffman, F., Lawrence, D., Long, M. C., Mahowald,
N., Moore, J. K., Randerson, J. T., and Thornton, P.: Preindustrial control and 20th
century carbon cycle experiments with the earth system model CESM1-(BGC) J.
Climate, in review, 2013.

respiration: pathways, mechanisms, and significance for global change, Biogeosciences,
8, 2047–2061, 2011.

Nakicenovic, N., Davidson, O., Davis, G., Gruebler, A., Kram, T., La Rovere, E. L.,
Metz, B., Morita, T., Pepper, W., Pitcher, H., Sankovski, A., Shukla, P., Swart, R.,
Watson, R., and Dadi, Z.: Special report on emissions scenarios, in: Contribution to the
Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge,

Ohm, H., Hamer, U., and Marschner, B.: Priming effects in soil size fractions of a podzol
Bs horizon after addition of fructose and alanine, J. Plant Nutr. Soil Sci., 170, 551–559,
2007.

Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P.
J., Levin, S., Swenson, S. C., and Thornton, B.: Technical Description of Version 4.0 of
the Community Land Model, National Center for Atmospheric Research, Boulder,

Paterson, E., Neilson, R., Midwood, A. J., Osborne, S. M., Sim, A., Thornton, B., and Millard, P.: Altered food web structure and C-flux pathways associated with

Table 1: Values for the parameters used in the calculation of the temperature sensitivity of decomposition rates for this study (Eq.4). Turnover times for all carbon pools are from Thornton and Rosenbloom (2005) and are the same as those used in CLM4. Activation energies are computed using the linear fit given by Knorr et al. (2005) in their Figure 2. A least-squares, best-fit Q_{10} coefficient is given for each of the modified decomposition rates, $k_{mod}(T)$.

Table 2: Total SOC storage estimated from the ISRIC-WISE data set in top 1 m, using the Eq. 6 unit conversion, in comparison to those calculated with CLM at equilibrium.

Table 3: Predicted total carbon in pools at the end of the future simulation (year 2100) and percentage increase in each carbon pool over the simulation period.

Figure 1: Decomposition rate (k) as a function of temperature in the standard Q_{10} model (unmodified rate) and the modified model given by Equation 4. The rates are plotted for all model carbon pools, indicated in the top left of each panel.

Figure 2: Plot of the proportional increase in decomposition rate of all soil pools, given as percentages, due to priming from an influx of C from the litter pools, computed from Eq. 5. The changes in rates are plotted as a function of the ratio of the sum of the unmodified potential C loss fluxes from all litter pools, F_{litter}, to the sum of the unmodified potential C loss fluxes from all soil pools, F_{soil}.

Figure 3: Soil carbon from the ISRIC-WISE data set (a) and the difference between this and simulated SOC with the standard (unmodified) CLM at equilibrium $\{OBS – ES\}$ (b). Data from the ISRIC-WISE data set were recalculated for stocks in the top 1 m and a weighted average over map units was produced. A full description of the calculation method is given in the text.

Figure 4: Difference in SOC at equilibrium between ET and ES $\{ET – ES\}$ (a), between EP and ES $\{EP – ES\}$ (c), and the change in error in SOC predictions with respect to the observations due to the modified temperature sensitivity $\{|OBS – ES| - |OBS – ET| \}$ (b), and due to adding priming $\{|OBS – ES| - |OBS – EP| \}$ (d). Positive values in (b) and (d) indicate the modification to the model improved prediction of SOC compared to the observations.
Figure 5: Deviation from ISRIC-WISE data (OBS) for the ES and the two modifications, ET and EP grouped on eco-regions.

Figure 6: Predicted total global organic carbon in the entire ecosystem (a), soil (c) and vegetation (e) starting from equilibrium year 2000 under predicted climate change with ES (“standard”), ET (“Temperature sensitivity”) and EP (“Priming”). The spatial maps show the changes between the average of the last 25 years of the equilibrium run and the average of the last 25 years of the future run (i.e. the period 2075-2099) for total ecosystem C (b), soil C (d), and vegetation C (f) using the standard model.