Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 4.589 IF 4.589
  • IF 5-year<br/> value: 3.696 IF 5-year
    3.696
  • CiteScore<br/> value: 3.94 CiteScore
    3.94
  • SNIP value: 0.995 SNIP 0.995
  • SJR value: 2.742 SJR 2.742
  • IPP value: 3.679 IPP 3.679
  • h5-index value: 21 h5-index 21
doi:10.5194/esd-2016-52
© Author(s) 2016. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
27 Oct 2016
Review status
This discussion paper has been under review for the journal Earth System Dynamics (ESD). The manuscript was not accepted for further review after discussion.
Addressing the assumption of stationarityin statistical bias correction of temperature
Manolis G. Grillakis1, Aristeidis G. Koutroulis1, Ioannis N. Daliakopoulos1, and Ioannis K. Tsanis1,2 1Technical University of Crete, School of Environmental Engineering, Chania, Greece
2McMaster University, Department of Civil Engineering, Hamilton, ON, Canada
Abstract. Bias correction of climate variables has become a standard practice in Climate Change Impact (CCI) studies. While various methodologies have been developed, their majority assumes that the statistical characteristics of the biases between the modeled data and the observations remain unchanged in time. However, it is well known that this assumption of stationarity cannot stand in the context of a climate. Here, a method to overcome the assumption of stationarity and its drawbacks is presented. The method is presented as a pre-post processing procedure that can potentially be applied with different bias correction methods. The methodology separates the stationary and the non-stationary components of a time series, in order to adjust the biases only for the former and preserve intact the signal of the later. The results show that the adoption of this method prevents the distortion and allows for the preservation of the originally modeled long-term signal in the mean, the standard deviation, but also the higher and lower percentiles of the climate variable. Daily temperature time series obtained from five Euro CORDEX RCM models are used to illustrate the improvements of this method.

Citation: Grillakis, M. G., Koutroulis, A. G., Daliakopoulos, I. N., and Tsanis, I. K.: Addressing the assumption of stationarityin statistical bias correction of temperature, Earth Syst. Dynam. Discuss., doi:10.5194/esd-2016-52, 2016.
Manolis G. Grillakis et al.
Manolis G. Grillakis et al.
Manolis G. Grillakis et al.

Viewed

Total article views: 256 (including HTML, PDF, and XML)

HTML PDF XML Total Supplement BibTeX EndNote
211 22 23 256 8 4 20

Views and downloads (calculated since 27 Oct 2016)

Cumulative views and downloads (calculated since 27 Oct 2016)

Viewed (geographical distribution)

Total article views: 256 (including HTML, PDF, and XML)

Thereof 254 with geography defined and 2 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 27 Apr 2017
Publications Copernicus
Download
Short summary
We present a methodology that adjusts the systematic errors of climate model simulated temperature towards observations. The method considers the separation of the stationary and the non-stationary components in order to apply adjustment only to the former. The results of a calibration-validation test show the good performance of the method. Additionally, results of the methodology on temperature projections, illustrate the preservation of the long-term statistics on the adjusted data.
We present a methodology that adjusts the systematic errors of climate model simulated...
Share