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Abstract

At scales of ≈10 days (the lifetime of planetary scale structures), there is a drastic
transition from high frequency weather to low frequency macroweather. This scale is
close to the predictability limits of deterministic atmospheric models; so that in GCM
macroweather forecasts, the weather is a high frequency noise. But neither the GCM5

noise nor the GCM climate is fully realistic. In this paper we show how simple stochastic
models can be developped that use empirical data to force the statistics and climate
to be realistic so that even a two parameter model can outperform GCM’s for annual
global temperature forecasts.

The key is to exploit the scaling of the dynamics and the enormous stochastic10

memories that it implies. Since macroweather intermittency is low, we propose us-
ing the simplest model based on fractional Gaussian noise (fGn): the Scaling LInear
Macroweather model (SLIM). SLIM is based on a stochastic ordinary differential equa-
tions, differing from usual linear stochastic models (such as the Linear Inverse Mod-
elling, LIM) in that it is of fractional rather than integer order. Whereas LIM implicitly15

assumes there is no low frequency memory, SLIM has a huge memory that can be ex-
ploited. Although the basic mathematical forecast problem for fGn has been solved, we
approach the problem in an original manner notably using the method of innovations to
obtain simpler results on forecast skill and on the size of the effective system memory.

A key to successful forecasts of natural macroweather variability is to first remove the20

low frequency anthropogenic component. A previous attempt to use fGn for forecasts
had poor results because this was not done. We validate our theory using hindcasts of
global and Northern Hemisphere temperatures at monthly and annual resolutions. Sev-
eral nondimensional measures of forecast skill – with no adjustable parameters – show
excellent agreement with hindcasts and these show some skill even at decadal scales.25

We also compare our forecast errors with those of several GCM experiments (with and
without initialization), and with other stochastic forecasts showing that even this sim-
plest two parameter SLIM model is somewhat superior. In future, using a space–time
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(regionalized) generalization of SLIM we expect to be able to exploiting the system
memory more extensively and obtain even more realistic forecasts.

1 Introduction

Due to their sensitive dependence on initial conditions, the classical deterministic pre-
diction limit of GCM’s is about ten days – the lifetime of planetary sized structures (τw).5

Beyond this, the forecast weather rapidly loses any relationship with the real weather.
The analogous scale (τow) for near surface ocean gyres is about 1 year (Lovejoy and
Schertzer, 2012b), so that even the ocean component – important in fully coupled cli-
mate models (referred to simply as GCM’s below) – is poorly forecast beyond this.
When using long GCM runs for making climate forecasts, we are therefore really con-10

sidering a boundary value problem rather than an initial value problem (Bryson, 1997).
For these longer scales, following (Hasselmann, 1976), the high frequency weather

can be considered as a noise driving an effectively stochastic low frequency system;
the separation of scales needed to justify such modelling is provided by the drastic
transitions at τw, τow. In the atmosphere, the basic phenomenology behind this has15

been known since the earliest atmospheric spectra (Panofsky and Van der Hoven,
1955) and was variously theorized as the “scale of migratory pressure systems of syn-
optic weather map scale” (Van der Hoven, 1957) and later as the “synoptic maximum”
(Kolesnikov and Monin, 1965). Later, it was argued to be a transition scale of the order
of the lifetime of planetary structures that separated different high frequency and low20

frequency scaling regimes (Lovejoy and Schertzer, 1986). More recently, based on the
solar-induced energy rate density, the atmospheric scale τw was deduced theoretically
from turbulence theory (Lovejoy and Schertzer, 2010), and τow was derived in Lovejoy
and Schertzer (2013, Chapt. 8). The same basic picture was also confirmed in the Mar-
tian atmosphere in Lovejoy et al. (2014). Although it is only plausible at midlatitudes the25

competing theory from dynamical meteorology postulates that the transition scale τw is
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the typical scale of baroclinic instabilities (Vallis, 2010); see the critique in Lovejoy and
Schertzer (2013, Chapt. 8).

Independent of its origin, the transition justifies the idea that the weather is essen-
tially a high frequency noise driving a lower frequency climate system and the idea
is exploited in GCM’s with long integrations as well as in Hasselman-type stochastic5

modelling, now often referred to as “Linear Inverse Modelling” (LIM), e.g. Penland and
Sardeshmuhk (1995), Newman et al. (2003), Sardeshmukh and Sura (2009); anal-
ogous modelling is also possible at much longer time scales using energy balance
models, for a review; see Dijkstra (2013). In these phenomenological models the sys-
tem is regarded as a multivariate Ohrenstein–Uhlenbeck (OU) process. The basic LIM10

paradigm (sometimes also called the Stochastic Linear Forcing paradigm) is based on
the stochastic differential equation:
( d

dt
+ωw

)
T (t) = σγγ(t) (1)

where ωw = τ−1
w is the “weather frequency”, σγ is the amplitude of the forcing and γ(t)

is “δ correlated” Gaussian white noise forcing with:15

〈γ(t)γ(s)〉 = δ(t− s); 〈γ(t)〉 = 0 (2)

“〈.〉 ” indicates ensemble averaging and δ(t− s) is the Dirac function. This uses the
convenient physics notation; alternatively, γ(t)dt = dW where W is a Wiener process.

Fourier transforming Eq. (1) and using the usual rule F.T.
[dH+1/2f

dtH+1/2

]
= (iω)H+1/2F.T.[f ]

where “F.T.” indicates “Fourier Transform”, the temperature spectrum is thus:20

ET (ω) = 〈|T̃ (ω)|2〉 ≈
σ2
γ

ω2 +ω2
w

(3)

where the tilde indicates Fourier transform, and (low and high frequencies) respec-
tively ET (ω) ≈ω−β with βl = 0, βh = 2. A spatial LIM model (for regional forecasting)
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is obtained by considering a vector each of whose components is the temperature (or
other atmospheric field) at different (spatially distributed) “pixels”, yielding a system of
linear stochastic ordinary differential equations of integer order. A system with 20 de-
grees of freedom (involving > 100 empirical parameters) currently somewhat outper-
forms GCM’s for global scale annual temperature forecasts (Newman, 2013, Table 2,5

Fig. 2).
The basic problem with the LIM approach, is that although we are interested in the

low frequency behaviour, for LIM models it is simply white noise (put d/dt = 0 in Eq. 1)
and this has no memory; by hypothesis LIM models therefore assume a priori there is
no long term predictability. However, ever since Lovejoy and Schertzer (1986), there10

has been a growing literature (Koscielny-Bunde et al., 1998; Huybers and Curry, 2006;
Blender et al., 2006; Franzke, 2012; Rypdal et al., 2013; Yuan et al., 2014) and see
the extensive review in Lovejoy and Schertzer (2013) showing that the temperature
(and other atmospheric fields) are scaling at low frequencies, with spectra significantly
different than those of OU processes, notably with βl in the range 0.2–0.8 with the15

corresponding low frequency weather regime (at scales longer than τw ≈ 10 days) now
being referred to as “macroweather” (Lovejoy, 2013). At a theoretical level, for regional
forecasting, a further shortcoming of the LIM approach is that it does not respect the
approximate property of space–time statistical factorization (Lovejoy and Schertzer,
2013, Chapt. 10).20

While the difference in the value of βl might not seem significant, the LIM white
noise value βl = 0, has no low frequency predictability whereas the actual values 0.2 <
βl < 0.8 (depending mostly on the land or ocean location) correspond to potentially
enormous predictability (see e.g. Fig. 1a–e below). Although this basic feature of “long
range statistical dependency” has been regularly pointed out in the scaling literature25

and an attempt was already made to exploit it (Baillie and Chung, 2002; see below),
the actual extent of this enhanced predictability has not been quantified before now
(see however Yuan et al., 2014), it justifies the development of the new “Scaling LInear
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Macroweather model” (SLIM) that we present below. We argue that even in its simplest
two parameter version, that it already outperforms GCM’s.

2 Linear stochastic models and fractional Gaussian noise

2.1 Linear and nonlinear stochastic atmospheric models

We have discussed the phenomenological linear stochastic models introduced in at-5

mospheric science by Hasselman and others from 1976 onwards. Yet there is an older
tradition of stochastic atmospheric modelling that can be traced back to the 1960’s:
stochastic cascade models for turbulent intermittency (Novikov and Stewart, 1964;
Yaglom, 1966; Mandelbrot, 1974; Schertzer and Lovejoy, 1987). Significantly, these
models are nonlinear rather than linear and the nonlinearity plays a fundamental role10

in their ability to realistically model intermittency. By the early 1980’s it was realized
that these multiplicative cascades were the generic multifractal processes and they
were expected to be generally relevant in high dimensional nonlinear dynamical sys-
tems that were scale invariant over some range. By 2010, there was a considerable
body of work showing that atmospheric cascades were anisotropic – notably with dif-15

ferent scaling in the horizontal and vertical directions (leading to anisotropic, stratified
cascades), and that this enabled cascades to operate up to planetary sizes (see the
reviews Lovejoy and Schertzer, 2010, 2013). While the driving turbulent fluxes were
modelled by pure cascades, the observables (temperature, wind etc.) were modelled
by fractional integrals of the latter (see below): the Fractionally Integrated Flux (FIF)20

model. Analysis of in situ (aircraft, dropsonde), remotely sensed data, reanalyses as
well as weather forecasting models showed that at least up to 5000 km, the cascade
processes were remarkably accurate with statistics (up to second order) typically show-
ing deviations of less than ≈ ±0.5 % with respect to the theoretical predictions (see
Lovejoy and Schertzer, 2013, Chapt. 4 for an empirical review).25
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The success of the cascade model up to planetary scales (Le) showed that the hor-
izontal dynamics were dominated by the solar induced energy flux (ε ≈ 10−3 WKg−1

sometimes called the “energy rate density”) and it implies a break in the space–time

cascades at about τw ≈ ε−1/3L2/3
e ≈ 10 days discussed above. The logical next ques-

tion was therefore: what happens if the model is extended in time and the cascade5

starts at a outer time scale much longer than τw? In Lovejoy and Schertzer (2013,
Appendix 10A), the mathematical details of this Extended Fractionally Integrated Flux
(EFIF) model were worked out, and it was shown that at frequencies below τ−1

w there
would a nonintermittent (near) Gaussian, (near) scaling regime with generic exponents
βl in the observed range.10

Although this (temporally) extended space–time cascade based model well pre-
dicted the basic space–time weather statistics (for scales < τw) and the temporal
macroweather statistics (for scales > τw), by itself, the model was not able to reproduce
the spatial macroweather statistics that characterize climate zones, so that another
even lower frequency climate process was necessary. It was proposed that – following15

the basic mathematical structure of the rest of the model – that this was also multiplica-
tive in nature. This factorization hypothesis was empirically verified on macroweather
temperature and precipitation data (Lovejoy and Schertzer, 2013, Chapt. 10; Lovejoy
and de Lima, 2015, respectively).

We are therefore now in a position to compare and contrast LIM and the ex-20

tended (nonlinear, stochastic) cascade models (EFIF) to propose Scaling LInear
Macroweather model (SLIM). SLIM is therefore a linear macroweather approximation to
the more general EFIF model which in the macroweather regime is only weakly nonlin-
ear. At the scalar level – here global scale temperature time series – LIM and SLIM are
very close because they are both Gaussian and can be presented as solutions to ordi-25

nary differential equations (although the latter are of fractional, not integer order). While
empirically it is found that macroweather temperature probability distributions have “fat
tails” – so that statistical moments of order ≈ 5 diverge (Lovejoy and Schertzer, 2013,
Chapt. 5; Lovejoy, 2014a; Lovejoy and de Lima, 2015), see also Lovejoy and Schertzer
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(1986) – for the (low order) statistics (e.g. near the mean and variance – first and sec-
ond order), the deviations from Gaussianity are small, the intermittency exponent for
the mean is low: C1 ≈ 0.01–0.02 (C1 = 0 for Gaussian processes). The key difference
between the LIM and SLIM scalar models is therefore the change in the low frequency
scaling: trivial vs. long range memory. As described in a future publication, another5

significant difference arises when the models are extended to space–time: (regional)
SLIM – but not LIM – approximately respects the statistical space–time factorization
property mentioned above.

2.2 From LIM to SLIM

In this paper, we concentrate on the simplest SLIM model – for a single scalar quantity10

and we illustrate this by hindcasting global scale temperature series. The key change
to the LIM model is thus a modification of the low frequency scaling: rather than βl = 0
(white noise), the SLIM model has 1> βl > 0. This can be effected by a simple exten-
sion of Eq. (1) to yield the fractional differential equation:

dH+1/2

dtH+1/2

(
d
dt

+ωw

)
T = σγγ(t) (4)15

where H +1/2 is a fractional order of differentiation. This yields the temperature spec-
trum:

ET (ω) ≈ω−(2H+1)
σ2
γ

(ω2 +ω2
w)

(5)

hence the low and high frequency SLIM exponents are: βl = 2H +1, βh = 2H +3. Note
that for the global temperature series analysed below, we have βl ≈ 0.6 and H ≈ −0.220

(see Fig. 4a and b below).
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Alternatively, Eq. (4) can be solved in real space directly. First, operate on both sides
of the above by (ωw +

d
dt )
−1 to obtain:

dH+1/2

dtH+1/2
T = γs(t); γs(t) = σγ

t∫

−∞

e−ωw(t−t′)γ(t′)dt′ (6)

Since the autocorrelation of γs is:

〈γs(t)γs(t−∆t)〉 = e−ωw∆tσ2
γ,s; σ2

γ,s =
σ2
γ

2ωw
(7)5

We see that for lags ∆t�ω−1
w that γs is essentially an uncorrelated white noise: γs is

simply γ smoothed over time scales shorter than τw =ω−1
w .

If we are only interested in frequencies lower than ωw, we can therefore simply solve:

dH+1/2T

dtH+1/2
= γ(t) (8)

The LIM paradigm is recovered as the special case with H = −1/2. Although physically,10

the weather scales are responsible for the smoothing at τw, in practice, we typically
have climate data averaged at even lower resolutions: for example monthly or annually.
Therefore, it is simpler to consider a “pure” process (with pure white noise forcing), and
then introduce the resolution/smoothing simply as an averaging procedure.

Formally, the solution to Eq. (8) is obtained by (Riemann–Liouville) fractional integra-15

tion of both sides of the equation by order H +1/2:

T (t) =
σγ

Γ(1/2+H)

t∫

−∞

(t− t′)−(1/2−H)γ(t′)dt′; −1/2 < H < 0 (9)
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(Γ is the usual gamma function). T (t) is sometimes called fractional Gaussian noise
(fGn). By inspection, the statistics are invariant under translations in time: t→ t+∆t
so that this process is stationary. Although basic processes of this type were first in-
troduced by Kolmogorov (1940), since Mandelbrot and Van Ness (1968), the usual
order one integral of Eq. (9) has received most of the mathematical attention: “frac-5

tional Brownian motion” (fBm). An interesting mathematical feature of fBm and fGn is
that they are not semi-Martingales and hence the standard stochastic Itô and Strata-
tovitch calculi do not apply (see Biagini et al., 2008 for a recent mathematical review).
In the present case, this is not important since we only deal with Wiener integrals
(i.e. of fGn with respect to deterministic functions). The FIF model mentionned earlier10

has the same mathematical structure: it suffices to replace γ by a turbulent flux from
a multiplicative cascade model; this overall model has the same fluctuation exponent H
but is intermittent with moments other than first order potentially having quite different
scaling.

While below we use simple averaging to obtain small scale convergence of fGn, for15

many purposes, the details of the smoothing at resolution τ are unimportant and it can
be useful to define the particularly simple “truncated fGn” process:

Tτ trun(t) =
σγ

Γ(1/2+H)

t∫

−∞

(t+ τ − t′)−(1/2−H)γ(t′)dt′; −1/2 < H < 0 (10)

where the singular kernel is truncated at scale τ. It can be shown that for large enough
lags ∆t, the fluctuation and autocorrelation statistics for truncated fGn are the same20

as for the averaged fGn, although, when H approaches zero (from below), the con-
vergence of the former to the latter becomes increasingly slow. In practice, the trun-
cated model is often a convenient approximation to the slightly more complex averaged
model.
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2.3 Properties of fGn

2.3.1 Definition and links to fBm

Fractional Brownian motion has received far more attention than fractional Gaussian
noise and it is possible to deduce the properties of fGn from fBm. However, since we
are exclusively interested in fGn, it is more straightforward to first define fGn and then5

– if needed – define fBm from its integral.
The canonical fractional Gaussian noise (fGn) process GH (t) with parameter H , can

be defined as:

GH (t) =
cH

Γ(1/2+H)

t∫

−∞

(t− s)H−1/2γ(s)ds (11)

where cH is a constant chosen so as to make the expression for the statistics partic-10

ularly simple, see below. First, taking ensemble averages of both sides of Eq. (11) we
find that the mean vanishes: 〈GH (t)〉 = 0. Now, take the average of GH over a resolution
τ:

GH ,τ(t) =
1
τ

t∫

t−τ

GH (t′)dt′ (12)

and define the function FH which will be useful below:15

FH (λ) =

λ−1∫

0

(
(1+u)H+1/2 −uH+1/2

)2
du; λ ≥ 1 (13)

with the particular value:

FH (∞) = π−1/22−(2H+2)Γ(−1−H)Γ(3/2+H) (14)
499
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and the asymptotic expression:

FH (λ) = FH (∞)− (H +1/2)2

−2H
λ2H + . . . (15)

If cH is now chosen such that:

cH =
Γ(H +3/2)

[
FH (∞)+ 1

2H+2

]1/2
=
(

π
2cos(πH)Γ(−2H −2)

)1/2

(16)

then we have:5

〈G2
H ,τ〉 = τ

2H ; −1 < H < 0 (17)

This shows that a fundamental property is that in the small scale limit (τ→ 0), the
variance diverges and H is scaling exponent of the root mean square (RMS) value.
This singular small scale behaviour is responsible for the strong power law resolution
effects in fGn. Since in addition 〈GH ,τ(t)〉 = 0, we see that sample functions GH ,τ(t)10

fluctuate about zero with successive fluctuations tending to cancel each other out; this
is the hallmark of the macroweather regime.

It is more common to treat fBm whose differential dBH ′(t) is given by:

dBH ′ = GH (t)dt; H ′ = H +1; 0 ≤ H ′ ≤ 1 (18)

so that:15

∆BH ′(τ) = BH ′(t)−BH ′(t− τ) =
t∫

t−τ

GH ′(t
′)dt′ = τGH ′,τ(t) (19)

with the property:

〈∆BH ′(∆t)2〉 = ∆t2H
′

(20)
500



D
iscussion

P
aper

|
D

iscussion
P

a
per

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|

While this defines the increments of BH ′(t) and shows that they are stationary, it does
not completely define the process, for this, one conventionally imposes BH ′(0) = 0,
leading to the usual definition:

BH ′(t) =
cH ′

Γ(H ′ +1/2)

[ 0∫

−∞

(
(t− s)H

′−1/2 − (−s)H
′−1/2

)
γ(s)ds

+
cH ′

Γ(H ′ +1/2)

t∫

0

(t− s)H
′−1/2γ(s)ds

]
(21)5

(Mandelbrot and Van Ness, 1968). Whereas fGn has a small scale divergence that

can eliminated by averaging over a finite resolution τ, the fGn integral
t∫
−∞
GH (t′)dt′ on

the contrary has a low frequency divergence. This is the reason for the introduction
of the second term in the first integral in Eq. (21): it eliminates this divergence at the
price of imposing BH ′(0) = 0 so that fBm is nonstationary (although its increments are10

stationary, Eq. 19).
A comment on the parameter H is now in order. In treatments of fBm, it is usual to use

the parameter H confined to the unit interval i.e. to give the scaling of the increments
of fBm. However, fBm (and fGn) are very special scaling processes, and even in low
intermittency regimes such as macroweather – they are at best approximate models15

of reality. Therefore, it is better to define H more generally as the fluctuation exponent
(see below); with this definition H is also useful for more general (multifractal) scaling
processes. When −1 < H < 0, the mean at resolution τ (Eq. 12) defines the anomaly
fluctuation (see below), so that H is equal to the fluctuation exponent for fGn, in con-
trast, for processes with 0 < H < 1, the fluctuations scale as the mean differences and20

Eq. (20) shows that H ′ is the fluctuation exponent for fBm. In other words, as long as an
appropriate definition of fluctuation is used, H and H ′ = 1+H are fluctuation exponents
of fGn, fBm respectively. The relation H ′ = H +1 follows because fBm is an integral or-
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der 1 of fGn. Therefore, since the macroweather fields of interest have fluctuations with
mean scaling exponent −1/2 < H < 0, we use H for the fGn exponent and 1/2 < H ′ < 1
for the corresponding integrated process.

Some useful relations are:

〈dBH ′(t)dBH ′(s)〉 = 〈GH (t)GH (s)〉dsdt = |t− s|2Hdsdt (22)5

and:

〈(BH ′(t2)−BH ′(t1))(BH ′(t4)−BH ′(t3))〉 =
1
2

(
(t4 − t1)2H ′ + (t3 − t2)2H ′ − (t3 − t1)2H ′ − (t4 − t2)2H ′

)
(23)

valid for t1 < t2 ≤ t3 < t4 (e.g. Gripenberg and Norros, 1996).
The relationship Eq. (23) can be used to obtain several useful relations for finite10

resolution fGn. For example:

〈GH ,τ1
(t)GH ,τ2

(t−∆t)〉 = 1
2τ1τ2

(
(∆t+ τ2)2H+2 + (∆t− τ1)2H+2 −∆t2H+2

− (∆t+ τ2 − τ1)2H+2
)

;
∆t ≥ τ
−1 < H < 0

(24)

A convenient expression for the special case at fixed resolution τ = τ1 = τ2 is:

RH ,τ(∆t) = 〈GH ,τ(t)GH ,τ (t−∆t)〉 = τ
2H

2

[
(λ+1)2H+2 + (λ−1)2H+2 −2λ2H+2

]
;λ =

∆t
τ

15

λ ≥ 1 (25)

Where λ is the nondimensional lag i.e. measured in integer resolution units. This is
convenient since real data is discretized in time and this shows that as long as we
correct for the overall resolution factor (τ2H ), that the autocorrelation only depends on
the nondimensional lag.20
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Since H < 0 and the large ∆t limit is:

RH ,τ(∆t) ≈ (H +1)(2H +1)∆t2H ; ∆t� τ (26)

the autocorrelation falls off algebraically with exponent 2H .

2.3.2 Spectrum and fluctuations

Since fGn is stationary, its spectrum is given by the Fourier transform of the autocorre-5

lation function. The autocorrelation is symmetric: RH ,τ(∆t) = RH ,τ(−∆t), so that for the
Fourier Transform we use the absolute value of ∆t. Also, we must take the limit of the
autocorrelation of small resolution which is the same as using the large λ formula. In
this case we obtain:

E (ω) =
Γ(3+2H)sinπH

√
2π

|ω|−β; β = 1+2H (27)10

The relation between β and H is the standard monofractal one, it is valid as long
as intermittency effects are negligible i.e. if we ignore the multifractal “corrections”.
However, sometimes – as here for high order statistical moments – or in the case of
precipitation even for low order moments - these can give the dominant contribution to
the scaling.15

The spectrum is one way of characterizing the variability as a function of scale (fre-
quency), however it is often important to have real space characterizations. These are
useful not only for understanding the effects of changing resolution, but also at a given
time scale ∆t for studying the full range of variability (i.e. statistical moments other than
second order, probability distributions, etc.). Wavelets provide a general framework for20

defining fluctuations, we now give some simple and useful special cases.
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Anomalies

An anomaly is the average deviation from the long term average and since 〈GH 〉 = 0,
the anomaly fluctuation over interval ∆t is simply GH at resolution ∆t rather than τ:

(∆GH ,τ(∆t))anom =
1
∆t

t∫

t−∆t

GH (t′)dt′ =
1
∆t

t∫

t−∆t

GH ,τ(t
′)dt′ = GH ,∆t(t) (28)

Hence using Eq. (25):5

〈(∆GH ,τ(∆t))
2
anom〉 = ∆t2H (29)

While this definition of fluctuation is fine for fGn, it is not appropriate for processes
with H > 0 since these “wander”, they do not tend to return to any long term value.
Anomaly fluctuations were referred to with the less intuitive term “tendency” fluctuation
in Lovejoy and Schertzer (2012a).10

Differences

The classical fluctuation is the difference (the “poor man’s wavelet”):

(∆GH ,τ(∆t))diff = GH ,τ(t)−GH ,τ(t−∆t) (30)

Hence:

〈(∆GH ,τ(∆t))
2
diff〉 = 2τ2H

(
1+ λ2H+2 − 1

2

(
(λ+1)2H+2 + (λ−1)2H+2

))
; λ =

∆t
τ

(31)15

In the large ∆t limit we have:

〈(∆GH ,τ(∆t))
2
diff〉 ≈ 2τ2H

(
1− (H +1)(2H +1)λ2H

)
; λ =

∆t
τ
� 1 (32)

Since H < 0, the differences asymptote to the value 2τ2H (double the variance). Notice
that since H < 0, the differences are not scaling with ∆t.
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Haar fluctuations

As pointed out in Lovejoy and Schertzer (2012a), the preceding fluctuations only
have variances proportional to τ2H over restricted ranges of H , specifically −1 ≤ H ≤ 0
(anomalies), 0 ≤ H ≤ 1 (differences), a more generally useful fluctuation (used below)
is the Haar fluctuation (from the Haar wavelet, Haar, 1910). These are defined as the5

differences between the average of the first and second halves of the interval ∆t:

(∆GH ,τ(∆t))Haar =
2
∆t

[ t∫

t−∆t/2

GH ,τ(t
′)dt′ −

t−∆t/2∫

t−∆t

GH ,τ(t
′)dt′
]

(33)

Using Eq. (23), we obtain:

〈(∆GH ,τ(∆t))
2
Haar〉 = 4∆t2H (2−2H −1) (34)

this indeed scales as ∆t2H and does not depend on the resolution τ.10

2.4 Using fGn to model and forecast the temperature

Using the definition (Eq. 11) of fGn, we can define the temperature as:

T (t) = σTGH (t) (35)

(i.e. σT = σγ/cH ). Let us now introduce the integral S(t):

S(t) =

t∫

−∞

T (t′)dt′ =
1

Γ(3/2+H)

t∫

−∞

(t− t′)H+1/2γ(t′)dt′ (36)15

Since T is a fractional integral of order 1/2+H with respect to white noise, S(t) is
a fractional integral of order 3/2+H = 1/2+H ′. Strictly speaking, the above integral
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diverges at −∞, however this is not important since we will always take differences over
finite intervals (equivalent to integrating T (t) over a finite interval) and the differences
will converge.

We can therefore define the resolution τ temperature as:

Tτ(t) = σTGH ,τ(t) =
S(t)−S(t− τ)

τ
= σT

BH ′(t)−BH ′(t− τ)
τ

(37)5

Notice that because of the divergence of S(t) at −∞, we did not define S(t) = σTBH ′(t)
however the differences do respect:

S(t)−S(t− τ) = σT
(
BH ′(t)−BH ′(t− τ)

)
. (38)

Using Eq. (35), the τ resolution temperature variance is thus:

〈T 2
τ 〉 = σ2

T τ
2H (39)10

From this and the relation Tτ(t) = σTGH ,τ(t), we can trivially obtain the statistics of Tτ(t)
from those of GH ,τ(t).

2.5 Forecasts

Since an fGn process at resolution τ is the average of the increments of an fBm, pro-
cess, it suffices to forecast fBm. There are four important related problems in the pre-15

diction of fBm: (a) to find the best forecast using finite past data, (b) infinite past data.
The cases (1) 0 < H ′ < 1/2 and (2) 1/2 < H ′ < 1 (with H ′ = 1+H) must be consid-
ered separately. Since −1/2 < H < 0, our problem corresponds to cases 2a, 2b. Ya-
glom solved problem 1b in 1955 (Yaglom, 1955), Gripenburg and Norris solved 2a, 2b
in 1996 (Gripenberg and Norros, 1996) and problem 1a was solved by Nuzman and20

Poor (2000). Hirchoren and Arantes (1998) used the Gripenburg and Norris results for
1/2 < H ′ < 1 to numerically test the method adapted to fGn, see also Hirchoren and
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D’attellis (1998). Although the Gripenberg and Norros (1996) result conveniently ex-
presses the fBm predictions at time t (the “forecast horizon”) directly in terms of the
past series for t ≤ 0, the corresponding formulae are not simple.

The standard approach that they followed yields nontrivial integral equations (which
they solved) in both the finite and infinite data cases. In what follows, we use a more5

straightforward method – the general method of innovations (see e.g. Papoulis, 1965,
Chapt. 13) – and we obtain relatively simple results for the case with infinite past data
(which is equivalent to the corresponding Gripenberg and Norros, 1996 result). In a fu-
ture publication we improve on this by adapting it to the finite data case. The main new
aspect of the forecasting problem with only finite data is that it turns out that not only10

do the most recent values (close to t = 0) have strong (singular) weighting, but the data
in the oldest available data also have singular weightings. In the words of Gripenberg
and Norris, this is because they are the “closest witnesses” of the distant past.

We now derive the forecast result for resolution τ fGn using innovations assuming
that data is available over the entire past (i.e. from t = −∞ to 0). Recall that the resolu-15

tion τ temperature at time t is given by:

Tτ(t) =
S(t)−S(t− τ)

τ

=
cHσT

τΓ(H +3/2)

[ t∫

−∞

(t− t′)H+1/2γ(t′)dt′ −
t−τ∫

−∞

(t− τ − t′)H+1/2γ(t′)dt′ −
]

(40)

We have used the fact that S(t) in a fractional integral of order H +3/2 of γ since the
γ’s are effectively independent random variables, they are called “innovations”. If Tτ(t)20

is known for t ≤ 0, then the above relation can be inverted to obtain γ(t) for t ≤ 0. If γ(t)
is known for t ≤ 0, then the minimum square (MS) estimator (circonflex) at time t ≥ τ is

507

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

given by:

T̂τ(t) =
Ŝ(t)− Ŝ(t− τ)

τ

=
cHσT

τΓ(H +3/2)

[ 0∫

−∞

(t− t′)H+1/2γ(t′)dt′ −
0∫

−∞

(t− τ − t′)H+1/2γ(t′)dt′ −
]

(41)

which depends only on γ(t) for t ≤ 0. That this is indeed the MS estimator follows since
the error ET in this estimator is orthogonal to the estimator. To see this, note that ET5

only depends on γ(t) for t ≥ 0:

ET = Tτ(t)− T̂τ(t) =
cHσT

τΓ(H +3/2)




t∫

0

(t− t′)H+1/2γ(t′)dt′ −
t−τ∫

0

(t− τ − t′)H+1/2γ(t′)dt′


 (42)

Since
〈(
Tτ(t)− T̂τ(t)

)
γ(s)
〉
= 0; t ≥ 0; s < 0 (43)

and the range of integration for T̂τ(t) in Eq. (42) is t′ < 0 whereas the range for the error10

ET (Eq. 42) is t′ > 0, T̂τ(t), ET are clearly orthogonal: 〈(Tτ(t)− T̂τ(t))T̂τ(t)〉 = 0. We can
use this to obtain:

〈ET (t)2〉 = 〈Tτ(t)2〉 − 〈Tτ(t)T̂τ(t)〉 = 〈Tτ(t)2〉 − 〈T̂τ(t)2〉 (44)

Using the substitution u = −(t− τ − t′)/τ in the integral Eq. (41) and the function FH (λ)
introduced in Eq. (13), and using Eq. (16) for cH , we obtain:15

〈T̂τ(t)2〉 = σ2
T τ

2H

[
FH (∞)− FH (λ)

FH (∞)+ 1
2H+2

]
(45)
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with FH (∞) given in Eq. (14).
Using Eq. (44), the error variance is:

〈ET (t,τ)2〉 = 〈Tτ(t)2〉 − 〈T̂τ(t)2〉 = σ2
T τ

2H

[
FH (λ)+ 1

2H+2

FH (∞)+ 1
2H+2

]

= σ2
T τ

2H

[
1+ (2H +2)FH (λ)

1+ (2H +2)FH (∞)

]
(46)

Hence, the fraction of the variance explained by the forecast, the “skill” (Sk) is:5

Sk(λ) =
〈T̂τ(t)2〉
〈Tτ(t)2〉

=

[
FH (∞)− FH (λ)

FH (∞)+ 1
2H+2

]
; λ ≥ 1 (47)

Figure 1 a shows the theoretical skill as a function of H for different forecast horizons,
and Fig. 1b for different forecast horizons as a function H . In Fig. 1a, dashed ref-
erence lines indicate the three empirically significant values: land (H ≈ −0.3), global,
(H ≈ −0.2), ocean H ≈ −0.1). In Fig. 1b, the estimated global value (H = −0.20±0.03,10

see below) is indicated in red.
This definition of skill is slightly different from the Root Mean Square Skill Score

(RMSSS) that is sometimes used to evaluate GCM’s (see e.g. Doblas-Reyes et al.,
2013). The RMSSS is defined as one minus the ratio of the RMS error of the ensemble-
mean prediction divided by the RMS temperature variation:15

RMSSS = 1− 〈(T − T̂ )2〉1/2

〈T 2〉1/2
(48)

In our case, the forecast is orthogonal to the prediction so that 〈(T − T̂ )2〉 = 〈T 2〉 − 〈T̂ 2〉
and we obtain:

RMSSS = 1− (1−Sk)1/2 ≈ 1
2
Sk +

1
8
S2
k + . . . (49)
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This shows that Sk and RMSSS are more or less equivalent skill measures both being
in the range 0 to 1. However, GCM forecasts are generally not orthogonal to the data
and for them, the RMSSS can be negative.

If the process is scaling over an infinite range in the data, but we only have access
to a record of duration λmem (in “pixels”) then:5

Sk,λmem,∞(λ) =

[
FH (λmem)− FH (λ)

FH (∞)+ 1
2H+2

]
; λ ≥ 1 (50)

To illustrate the potentially huge amount of memory in the climate system (especially
in the ocean), we can (somewhat arbitrarily) define the memory in the system by the
λmem value such that Sk,λmem,∞(1)/Sk,∞,∞(1) = 0.9, the result is shown in Fig. 1c. We
see that over land (using H = −0.3), the memory estimated this way typically only goes10

back 15 pixels (nondimensional time steps), whereas over the ocean (using H = −0.1),
it is 600. This means that the annual temperatures over the ocean typically have infor-
mation from over 600 years in the past whereas over land, it is only 15 years. Note that
these indicate the memory associated with 90 % of the skill (see Fig. 1a) and these skill
levels fall off rapidly as H approaches the white noise value H = −1/2. We could also15

note that this calculation does not imply that we if we only had a short length of ocean
data that the forecast would be terrible. This is because even if we only had 10 years of
ocean data, the past from 10 years ago implicitly contains significant information from
the distant past, and could in principle be exploited (see the numerical experiments in
Hirchoren and Arantes, 1998).20

In the real world, after the removal of the anthropogenic component (see Lovejoy
and Schertzer, 2013, Fig. 4c), the scaling regime has a finite length (estimated as
≈ 100 years here), so that the memory in the process is finite. In addition, the monthly
and annual resolution series that we hindcast below used memories of λ = 180, 20
units (months, years) respectively. The finite memory is easy to take into account; if the25

process memory extends over an interval of λmem units at resolution τ (i.e. over a time
interval t = λmemτ) it suffices to integrate to λmem instead of infinity; i.e. to replace infinity
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by λmem in Eq. (50):

Sk,λmem,λmem(λ) =

[
FH (λmem)− FH (λ)

FH (λmem)+ 1
2H+2

]
; λmem ≥ λ ≥ 1 (51)

In Fig. 1d we show that the effect of finite memory increases strongly as H moves
closer to zero, and is non negligible, even for λmem = 180, the largest used here (for the
monthly series, when H = −0.17, the skill is reduced by 3–5 % up to λ = 60, see the5

bottom curves in Fig. 1d.
It is instructive to compare the skill obtained with the full memory with that if only

the most recent variable Tτ(0) is used. The latter can be used either as classical per-
sistence so that the forecast at time t = λτ forecast to be equal to the present value
(no change) (i.e. T̂τ(t) = Tτ(0)) or as “enhanced” persistence in which Tτ (0) is used as10

a linear estimator of T̂τ(t). Since the mean of the process is zero, for a single time step
t = τ in the future, this is the same as the minimum square forecast made of an order
1 autoregressive model with nondimensional time step = 1: AR(1). Note however this
equivalence is only for a single time step in the future, for forecasts further in the future;
the AR(1) skill decays exponentially, not in a power law manner.15

In persistence, the error in the forecast is simply the difference ET (t) = ∆Tτ(t) =
Tτ(t)− Tτ(0), the skill is therefore Sk = 1− 〈∆T 2

τ 〉/〈T 2
τ 〉. In “enhanced persistence”, the

value Tτ (0) is simply considered as an estimator and the minimum square error linear
estimator T̂ (t) is only proportional to Tτ(0). A standard calculation (e.g. following (Pa-
poulis, 1965), ch. 13) yields: T̂τ(t) = [〈Tτ(t)Tτ(0)〉/〈Tτ(0)2〉]Tτ(0) so that the term in the20

square brackets “enhances” the persistence value Tτ (0). Figure 1e compares the skill
of the three estimators as functions of H for λ = 1 (i.e. using Eq. (25) for the autocorre-
lation): T̂τ(τ) = (22H+1 −1)Tτ(0). Whereas for H ≈< −0.1, classical persistence is quite
poor, we see that the enhanced persistence forecast is much better.
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3 Forecasting the Northern Hemisphere and global temperatures

3.1 The data and the removal of anthropogenic effects

In order to test the method, we chose the NASA GISS Northern Hemisphere and global
temperature anomaly data sets, both at monthly and at annually averaged resolutions.
A significant issue in the development of such global scale series is the treatment of the5

air temperature over the oceans which are estimated from sea surface temperatures;
NASA provides two sets, the Land–Ocean Temperature Index (LOTI) and Land-Surface
Air Temperature Anomalies only (Meteorological Station Data): the dTs series. Ac-
cording to the site (http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts+dSST.txt),
LOTI provides a more realistic representation of the global mean trends than dTs; it10

slightly underestimates warming or cooling trends, since the much larger heat capac-
ity of water compared to air causes a slower and diminished reaction to changes; dTs
on the other hand it overestimates trends, since it disregards most of the dampening
effects of the oceans that cover about two thirds of the Earth’s surface. In order to
compare the two, we used LOTI for the annual series and dTs for the monthly series.15

The prediction formulae assume that the series has the power law dependencies
indicated above with RMS anomaly or Haar fluctuations following ∆tH (Eq. 34), and
spectra with ω−β, with β = (1+2H) (Eq. 27). However, this scaling only holds over
the macroweather regime, and in the industrial epoch, anthropogenic forcing begins
to dominate the low frequency variability at scales τc ≈ 10–20 years whereas it occurs20

at scales τc ≈ 100 years in the pre-industrial epoch, see Lovejoy et al. (2013b) and
Fig. 4d below. However, Lovejoy (2014a, b) showed that if the radiative forcing due to
the observed global annually averaged CO2 concentrations (ρCO2

) is used (proportional
to log2ρCO2

), that the “effective climate sensitivity” λ2×CO2,eff is quite close to the more
usual “equilibrium climate sensitivity” estimated by GCM’s and that the residues had25

statistics over the scale range 1 to ≈ 125 years that were very close to pre-industrial
multiproxy statistics (see Table 2).
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Therefore as a first step, using the Frank et al. (2010) data (extended to 2013 as
described in Lovejoy, 2014b), we removed the anthropogenic contribution, using:

T (t) = Tanth(t)+ Tnat(t) (52)

Tanth(t) = λ2×CO2,efflog2(ρCO2
(t)/ρCO2,pre); ρCO2,pre = 277ppm

where ρCO2,pre is the pre-industrial concentration (= 277 ppm), the monthly data are5

shown as a function of date (Fig. 3a) and CO2 forcing (Fig. 3b) with residues shown
in Fig. 3c. The effective sensitivities are shown in Table 1a. We could note that if alter-
natively, the equivalent CO2 since 1880 was used (“CO2eq” as estimated in the IPCC
AR5 report), the senstivities need only be divided by a factor 1.12, and the residues
are essentially unchanged. This is because of the nearly linear relation between the10

actual CO2 concentration and the estimated equivalent concentration (correlation co-
efficient > 0.993; see Table 1b for the SDs of the residues, Tnat). By using the observed
CO2 forcing as a linear surrogate for all anthropogenic effects we avoid various uncer-
tain radiative assumptions needed to estimate CO2 eq especially those concerning the
cooling effects of aerosols which are still unsettled. As explained in (Lovejoy, 2014a),15

since the anthropogenic effects are linked via global economic activity, the observed
CO2 forcing is a plausible linear surrogate for all them.

From Table 1a we see that the sensitivities do not depend on the exact range over
which they are estimated (columns 2–4). As we move to the present (column 4 to
column 2), the sensitivities stay within the uncertainty range of the earlier estimates20

with the uncertainties constantly diminishing, consistent with the convergence of the
sensitivities as the record lengthens. As a consequence, if we determine Tanth using
the data only up to 1998 or up to 2013, there is very little difference: for the global data
at monthly resolution, the difference in the standard deviations (SD’s) of Tnat estimated
with the different sensitivities is 0.005 K whereas at annual resolutions, it is 0.0035 K (for25

this period, ∆log2ρCO2
= 0.05). These differences are larger than the estimated error in

the global scale temperatures (estimated as ±0.03 K for both – the errors have very little
scale dependence, Lovejoy et al., 2013a). From Table 1a, we see that there is a ≈ 30 %
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difference between the global and monthly sensitivities due to the change from the LOTI
(global) to dTs (monthly) series the sensitivities are virtually independent of whether the
data is at one month or one year resolution. We also see that the Northern Hemisphere
has systematically higher sensitivities than the entire globe, this is consistent with the
larger land mass in the north and the larger sensitivity of land with respect to the ocean.5

An obvious criticism of the method of effective climate sensitivities is that an-
thropogenic forcing primarily warms the oceans and only with some lag, the atmo-
sphere. Systematic cross-correlation analysis in Lovejoy (2014a, b) shows that while
the residues are barely affected (see rows 2 and 3 in Table 2 and Lovejoy, 2014a for
more on this), the values of the sensitivities are affected (see e.g. column 4 in Table 1a).10

Finally, we can note that the difference between LOTI and dTs temperature is primar-
ily the sensitivities (Table 1a); that the remaining differences in the residues is mostly
due to their different resolutions. From Eq. (39) we see that the ratio of RMS fluctuations
in these should be λH where λ is the resolution ratio, here 12 months year−1. Table 2
shows that the H estimated from the RMS values is indeed close to the H estimated15

more directly in the next subsection. This shows that the main difference between the
LOTI and dTs series is indeed their climate sensitivities.

In order to judge how close the residues from the CO2 forcing (Eq. 52) are to the
true natural variability, we can make various comparisons (Table 1b). Starting at the
top (row 1), we see that, as shown in Lovejoy (2014a), the statistics of the resulting20

residues are very close to those of pre-industrial multiproxies (see also Fig. 4c below).
In row 3, we see that we take the residues of the 20 year lagged temperatures, there is
virtually no difference (although the sensitivities are significantly higher, see Table 1a).
As further reference, (row 4), we see that it is substantially smaller than the SD of the
linearly detrended series (i.e. when the residues are calculated from a linear regression25

with time rather than the forcing).
As further evidence that they provide a good estimate of the true natural variability,

in rows 5–10 we also show the annual RMS errors of various GCM global temperature
hindcasts. For example, in rows 5–6 we compare hindcasts of CMIP 3 GCM’s both
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with and without annual data initialisation, assimilation (rows 5, 6). Without initialization
(row 5), the results are half way between the CO2 forcing residues (i.e. Tnat, row 2)
and the SD of the linearly detrended series (row 4), i.e. the forecast is poor even for
the anthropogenic part. Unsurprisingly, with annual data initialisation, assimilation (row
6) it is much better, but it is apparently still unable to do better than simply estimating5

the anthropogenic component. We can deduce this since the resulting RMS errors are
virtually identical to the SD of the estimated Tnat (row 3). This conclusion is reinforced
in row 7 where CMIP 3 GCM’s (without data initialization) were analyzed. However,
in place of annual data initialization, a complex empirical bias and variance correction
scheme was implemented in order to keep the statistics of uninitialized hindcasts close10

to the data. We see that the resulting RMS error is virtually identical to GCM with data
initialization (row 6) as well as the SD of Tnat (row 3). They are also very close to other
GCM estimates of natural variability. These conclusions are reinforced in the 5 and
9 year “anomaly” columns. As expected – due to the averaging of the temperature in
the definition of the anomalies out to the forecast horizon – the RMS error decreases.15

However, it is still only barely better than the Tnat estimates from the residues.
Very similar results are indicated in rows 8–10 for other GCM hindcast experiments,

these are shown graphically in Fig. 2, which is adapted from a multimodel ENSEM-
BLES experiment hindcasts discussed in Garcia-Serrano and Doblas-Reyes (2012).
The multimodel mean is consistently close to – but generally a little above – Tnat (bot-20

tom horizontal line) while remaining better than the SD of the linearly detrended tem-
perature (top horizontal line). Also shown in Table 2 and Fig. 2 are the results of LIM,
SLIM and other stochastic models, these will be discussed further in Sect. 4. For now
suffice it to indicate that the SLIM model error is bounded above by the SD of Tnat.
By using the long range memory to forecast Tnat, it can only do better. It thus generally25

improves upon the GCM’s and – for two year horizons and beyond – it is better than the
> 100 parameter LIM model whose 9 year forecast is essentially equivalent to a linear
detrending.
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3.2 Estimating H from the residues

Having estimated Tnat by removing the anthropogenic contribution, we may now test the
quality of the scaling and estimate H . Figure 4a shows the raw spectra of the residues
showing the scaling but with large fluctuations (as expected) with β ≈ 0.60. We have
already mentionned that the intermittency is low in this macroweather regime, indeed5

using exponents estimated in (Lovejoy and Schertzer, 2013), the resulting multifrac-
tal corrections to the variance are ≈ 0.01–0.02 so that we may use the monofractal
relation β = 1+2H which yields: H ≈ −0.20. Slightly more accurate estimates can be
obtained by averaging the spectrum over logarithmically spaced bins (Fig. 4b, and by
compensating the spectrum by dividing it by the theoretical spectrum with β = 0.5410

(H = −0.17). This figure makes the estimate β = 0.20±0.06 (H = −0.20±0.03) plausi-
ble. Finally, the corresponding RMS Haar fluctuations are shown in Fig. 4c, we see that
they plausibly follow H = −0.20 out to about 100 years (the sharp drop at the largest
lag is not significant: it corresponds to a single long fluctuation that is somewhat bi-
ased since some of the low frequency natural variability is also removed when Tnat is15

estimated by the method of residuals.
Also shown for reference is the GISS-E2-R millennium control run (with fixed forc-

ings), as well as the RMS fluctuations for three pre-industrial multiproxies. We see that
out to about 100 year scales, all the fluctuations have nearly the same amplitudes as
functions of scale supporting the idea that Tnat as estimated by residuals is indeed20

a good estimate of the natural variability, and also confirming the estimate the global
scale exponent value H = −0.20±0.03.

As a final comparison, Fig. 4d shows RMS Haar fluctuations for the global averages
(from Fig. 4c), land only averages and from the oceans – the Pacific Decadal Oscillation
(PDO). The PDO is the amplitude of the largest eigenvalue of the Pacific Sea Surface25

Temperature autocorrelation matrix (i.e. the amplitude of the most important Empirical
Orthogonal Function: EOF). For the land only curve, notice the sharp rise for scales
>≈ 10 years; this is the effect of the anthropogenic signal that was not removed in this
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series. Overall we see that (roughly) for land H ≈ −0.3, for the globe, H = −0.2, and for
the oceans, H = −0.1. Figure 1a, c shows the drastic differences in memory implied by
these apparently small changes in H .

4 Testing SLIM by hindcasting

4.1 The numerical approach5

The theory for predicting fGn leads to the general equation for the variance of forecast
error (ET ) at forecast horizon t, resolution τ, Eq. (47). In order to test the equation on
the temperature residues, we can use the global and Northern Hemisphere series an-
alyzed in the previous section and systematically make hindcasts. In this first study, we
took a simple, straightforward approach based on the method of innovations. We dis-10

cretised Eq. (9), which was then written as a matrix equation of the form: Tt =
∑
t′<t
Mt,t′γt′

where the indices refer to the discrete time nondimensionalized by the series resolu-
tion, and Mtt′ which is the (singular) kernel from the fractional integration. The sum
was over finite past of length tmem = λmemτ units (see below) and the matrix was then
inverted to yield the corresponding innovations γt. To make the forecast at time t+∆t15

(i.e. ∆t units in the future), the equation was used with an augmented kernel Mt+∆t,t′

with the innovation vector lengthened by appending ∆t zeroes (the expectation values
of the unknown future innovations) to the tmem innovations that were determined in the
previous step.

While our approach has the advantage of being straightforward (and it was tested on20

numerical simualtions of fGn), in future applications improvements could be made. For
example, by using a Girsanov formula, we could rewrite fGn in terms of a finite integral
(see Biagini et al., 2008), and the discretised numerics would then be more accurate
(this is especially important for H near the limiting values 0 and −1/2). Alternatively,
we could use (Gripenberg and Norros, 1996) integral equation approach discretized25
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with a variant of the (Hirchoren and Arantes, 1998), approach which notably has the
advantage of requiring less past data.

4.2 Results

In order to obtain good hindcast error statistics, it is important to make and validate as
many hindcasts as possible, i.e. one for each discretised time that is available. How-5

ever, due to the long-range correlations, we want to use a reasonable number of past
time steps in the hindcast for memory, so that the earliest possible hindcast will be later
than the earliest available data by the corresponding amount. The compromise used
here consisted of dividing the 134 year series into 30 annual blocks (annual resolution)
and 20 year blocks (monthly resolution). In each block in the annual series, the first10

20 years were used as “memory” to develop the hindcast over the next 10 years for
estimating the hindcast errors: a total of 134−30 = 104 forecasts were made. For the
monthly series, the same procedure involved blocks of 240 months: 180 months for the
memory and 60 months for the hindcast for a total of 1608−240 = 1368 hindcasts.

The hindcasts can be evaluated at various resolutions and forecast horizons, Eq. (47)15

gives the general theoretical result. The cases of special interest are the temperature
hindcasts and the anomaly hindcasts with (resolutions, horizons) of (τ, λτ) and (λτ, λτ)
respectively. The error variance ratios (R) are:

Rtemp =
〈ET (λτ,τ)2〉
〈ET (τ,τ)2〉

= 1+ (2+2H)FH (λ) (53)

and:20

Ranom =
〈ET (λτ,λτ)2〉
〈ET (τ,τ)2〉

= λ2H (54)

Both ratios are shown in Fig. 5 along with the exact theory curves and Table 3 gives
the corresonding highest resolution SDs (for both lagged and unlagged estimates of
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Tnat, there is virtually no difference). It is seen that all the forecast error variances
(global, northern, annual, monthly resolution) collapse quite well between the theory
curves corresponding to H = −0.17 and H = −0.23 corresponding to H ≈ −0.20±0.03
(although they are closer to the H = −0.17 curves). It is important to stress that Fig. 5 is
completely nondimensional, it depends on a single parameter (H), and this parameter5

was estimated earlier using a quite different technique (Haar fluctuations and spectra)
that had no direct relation to the property being measured (forecast skill). We have
effectively used spectral and Haar analysis of scaling to determine the accuracy of
forecasts using no extra information. Figure 5 has no adjustable parameters so that
the agreement of the hindcast errors with theory is a particularly strong confirmation of10

the theory. We could add that the fact that the errors depend only on the dimension-
less forecast horizon is also a consequence of the scaling, i.e. on the lack of strong
characteristic time scale in the macroweather regime.

Since the anomaly errors are power laws (Eq. 54), they can conveniently evaluated
on a log–log plot; see Fig. 6. Note that the RMS anomaly errors decrease with forecast15

horizon. The reason is that while forecasts further and further in the future loose accu-
racy, this loss is more than compensated by the decrease in the variance due to the
lower resolution, so that the anomaly variance decreases.

4.3 Hindcast skill

Another way to evaluate the hindcasts is to determine their nondimensional skills i.e.20

the fraction of the variance that they explain (see the general formula Eq. 47). From
the formula, we can see that the skill depends only on the nondimensional forecast
horizon λ = t/τ. Therefore the skill for forecast anomalies – i.e. the average of the
forecast up to the horizon i.e. t = τ, hence λ = 1, has the remarkable property of being
constant, independent of the horizon. The reason is that while forecasts further and25

further in the future loose accuracy, this loss is exactly compensated by the decrease
in the variance due to the lower resolution, so that the anomaly skill does not change.
Figure 7 is another example of a nondimensional plot where the theory involves no
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adjustable parameters, it shows that the theoretical prediction is well respected by the
global, Northern Hemisphere annual and global resolution series. Since we estimated
H = −0.20±0.03, it can be seen that the skill for the monthly series is nearly as high
as theoretically predicted up to a year or so for the global, but up to several years for
the Northern Hemisphere series. The global series has slightly lower forecast skill than5

theorically predicted, but is still of the order of 15 % at 10 years. Also shown is the effect
of using only a finite part of the memory.

The skill in usual temperature forecasts (i.e. with fixed resolution τ, and increasing
horizon t = λτ) is shown in Fig. 8. We see that monthly series can be predicted to nearly
the theoretical limit up to about 2–3 years (≈ 5 % skill), for the annual series, this is up10

to about 5 years (≈ 10 % skill). Again the results are close to the H = −0.17 theory.

4.4 Hindcast correlations

A final way to evaluate the hindcasts is to calculate the correlation coefficient between
the hindcast and the temperature:

ρT̂ ,T (t,τ) =
〈T̂τ(t)Tτ(t)〉 − 〈T̂τ(t)〉〈Tτ(t)〉
〈T̂τ(t)2〉1/2〈Tτ(t)2〉1/2

(55)15

Since 〈T 〉 = 0, the cross term vanishes; using Eq. (44) we obtain the simple result:

ρT̂ ,T (t,τ) =

(
FH (∞)− FH (λ)

FH (∞)+ 1
2H+2

)1/2

; λ =
t
τ

(56)

(i.e. =Sk**1/2) or, asymptotically for λ� 1:

ρT̂ ,T (t,τ) ≈ 2H+1/2
(
H +

1
2

)
U1/2λH ; λ� 1; U =

√
π

2Γ(1−H)Γ(3
2 +H)

(57)
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In the special cases of anomalies t = τ, λ = 1 and we obtain:

ρT̂ ,T (t,t) =
√

1+HU22H+2 (58)

so that the correlations are constant at all forecast horizons. Over the range −1/2 <
H < 0, the constant U is close to unity.

As in the previous hindcast error analyses, the series were broken into blocks and5

the forecasts were repeated as often as possible; each forecast was correlated with the
observed sequence and averages were performed over all the forecasts and verifying
sequences (the mean correlation given by the thick lines), Fig. 9. The uncertainty in the
hindcast correlation coefficients was estimated by breaking the hindcasts into thirds:
three equal sized groups of blocks with the error being given by the SD of the three10

about the mean (dashed lines). Also shown in Fig. 9 are the theoretical curves (Eq. 54)
for H = −0.20, in this case the dashed lines indicate the theory for one SDs in H i.e. for
H = −0.17, H = −0.23.

As predicted by Eq. (55), the anomaly correlations are relatively constant up to about
5 years for the annual data (top row), and nearly the same for the monthly data (bot-15

tom row). In addition, the northern series (blue) are somewhat better forecast than the
global series (red). It can be seen that temperature forecasts (i.e. with fixed resolutions)
have statistically significant correlations out to 8–9 years for the annual forecasts, out
to about 2 years for the monthly global and nearly 5 years for the monthly Northern
Hemisphere forecasts (bottom dashed lines). The anomaly forecasts are statistically20

significantly correlated at all forecast horizons. Figure 9 provides more examples of
nondimensional plots with no free parameters, and again the agreement with the hind-
casts validation is remarkable.

Although the results for the anomaly correlations are quite close to those of hindcasts
in Garcia-Serrano and Doblas-Reyes (2012), the latter are for the entire temperature25

forecast, not just the natural variability as here. This means that the GCM correlations
will be augmented with respect to ours due to the existence of long term anthropogenic
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trends in both the data and the forecasts that are absent in ours (but even with this
advantage, their correlations are not higher).

4.5 Comparison with GCM’s, LIM, AR(1) and ARFIMA hindcasts

In Table 2 and Fig. 2, we have already compared GCM hindcast errors with estimates of
the natural variability (Tnat) from the residues of a linear regression on the CO2 radiative5

forcing since 1880. We found that the annual, global GCM hindcasts had errors that

were close to, but generally larger than the SD of Tnat (〈T 2
nat〉1/2) but smaller than the

SD of the linearly detrended temperature series (the horizontal lines in Fig. 2). 〈T 2
nat〉1/2

is the RMS error of an unconditional forecast (i.e. with no knowledge of the past):
〈T 2

nat,τ〉 = 〈E2
T (τ,∞)〉 (see Eq. 46), it is the upper bound to the hindcast errors. In Fig. 2,10

we see that the one-parameter stochastic hindcast (with H = −0.2) is somewhat better
than the GCM’s up to about 6 years after which it is about the same. This bolsters the
hypothesis that GCM’s primarily model the anthropogenic temperature change, not the
natural variability whereas SLIM has some skill in forecasting the latter.

Table 2 and Fig. 2 also compare these to LIM hindcasts modelled with 20 degrees15

of freedom (involving > 100 parameters). We see that LIM is slightly better than SLIM
for horizons up to about 2 years beyond which SLIM is better. According to the analysis
in (Newman, 2013), for periods beyond about a year, the forecasts are mostly deter-
mined by the two most important Empirical Orthogonal Functions (EOF’s), and their
skill decays exponentially, not as a power law. From Fig. 2, their main effect seems to20

be to remove the long term linear trend allowing LIM to have an asymptotic RMS error
roughly equal to the SD of the linearly detrended series (the upper horizontal line).

Finally, in Table 2, rows 12, 13, we have compared the errors with those of an early
attempt at scaling temperature forecasts using the AutoRegressive Fractionally Inte-
grated Moving Average process (ARFIMA) (Baillie and Chung, 2002) along with the25

corresponding order one AutoRegressive (AR(1)) process. Unfortunately, the forecasts
were made by taking 10 year segments and in each removing a separate linear trend
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so that the low frequencies were not well accounted for (see the footnote to the table
for more details). The AR(1) results were not so good: close to the SDs of the de-
trended temperatures. As expected – because it assumes a basic scaling framework
– the ARFIMA results were somewhat better. Yet they are substantially worse than the
other methods, probably because they did not remove the anthropogenic component5

first.

5 Conclusions

GCM’s are basically weather models whose forecast horizons are well beyond the de-
terministic predictability limits, corresponding to many lifetimes of planetary scale struc-
tures: the macroweather regime. In this regime – that extends from about 10 days to10

≈ 100 years (preindustrial), the weather patterns that are generated are essentially ran-
dom noise. With fixed boundary conditions, GCM’s therefore converge asymptotically
(in a power law manner, Fig. 4c) to the their (model) climates. In order to model the
low frequency variations associated with the climate proper, the GCM’s must be ex-
ternally forced; if the forcing is strong enough, in principle it can reverse the trend of15

macroweather fluctuations decreasing with increasing time scale and initiate a new cli-
mate regime where fluctuations instead increase with scale (as they do in the weather
regime, see Lovejoy et al., 2013b). In the real world (pre-industrial), this occurs some-
where around 100 years and fluctuations increasing in scaling manner (but now with
H > 0) out to ice-age time scales (≈ 50–100 kyr). In addition, the real world may involve20

new, slow internal processes that become important at these scales.
In this view, the problem with the GCM approach is that in spite of massive improve-

ments over the last 40 years, the weather noise that they generate isn’t totally realistic
nor does their climate coincide exactly with the real climate. In an effort to overcome
these limitations, stochastic models have been developed that directly and more real-25

istically model the noise and use real world data to exploit the system’s memory so as
to force the forecasts to be more realistic.
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The main approaches that could potentially overcome these limitations are the
stochastic ones. However, going back to Hasselmann (1976) these only use integer
ordered differential equations, they implicitly assume that the low frequencies are white
noises – and hence cannot be forecast with any skill. Modern versions – the Linear
Inverse Models (LIM) add sophistication and a large number of (usually, but not neces-5

sarily) spatial parameters, but they still impose a short (exponentially correlated) mem-
ory and they focus on periods up to a few years at most. This contrasts with turbulence
based nonlinear stochastic models which assume that the system is scaling over wide
ranges. When they are extended to the macroweather regime, they predict low intermit-
tency, scaling fluctuations with exponents close to those that are observed by a growing10

macroweather scaling literature. Contrary to their behaviour in the weather regime, in
macroweather they are only weakly nonlinear, the Scaling LInear Macroweather model
(SLIM) is thus an approximation to this more general Extended Fractionally Integrated
Flux (EFIF) model.

In this paper, we therefore make the assumption that the low frequencies are not15

white noises, that they have very long memories. The simplest relevant model is of
fractional Gaussian noise (fGn) process whose integral is the better known fractional
Brownian motion (fBm) process. SLIM can be obtained as a solution of a fractional or-
der generalization of the usual LIM differential equation. Although we only discuss the
scalar version for single time series – here global scale temperatures – in future publi-20

cations we will show how to extend SLIM to vector versions yielding regional forecasts
and accounting for the different state variables (i.e. not only the temperature).

In Sect. 2, we situate the process in the mathematical literature and derive basic
results for forecasts and forecast skill. These results show that a remarkably high level
of skill is available in the climate system; for example for forecast horizons of one25

nondimensional time unit in the future (i.e. horizons equal to the resolution), the forecast
skills – defined as the fraction of the variance explained by the forecast – are 15, 35,
64 % for land, the whole globe and oceans respectively (Fig. 1b; taking rough exponent
values H = −0.3, −0.2, −0.1 respectively, Fig. 4c). To quantify the size of the memory,
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it can be defined as the number of nondimensional units needed to supply 90 % of
the full memory of the system. Using the same empirical exponents, we found that the
memory is 15, 50, 600 for land, the globe and ocean regions respectively.

The SLIM model forecasts the natural variability so that the responses to solar and
volcanic forcings are implicitly included in the forecast. However, the responses to the5

anthropogenic forcings are not; we must therefore remove the anthropogenic compo-
nent which becomes dominant at scales of 10–30 years. For this, we follow Lovejoy
(2014a) who showed that the CO2 radiative forcing is a good linear proxy for all the an-
thropogenic effects (including the difficult to estimate cooling due to aerosols) so that
the natural variability is the residue with respect to a regression against the forcing. In10

Table 2, Fig. 2, we showed that the resulting SD (±0.109 K) is very close to the RMS
errors in annual, globally averaged GCM temperature hindcasts that use annual data
initialisation, assimilation. Indeed, to a good approximation, all the models have errors
bounded between this estimate of the natural variability and the slightly higher SD of
the linearly detrended temperature series (±0.163 K). This is true in spite of the fact15

that they are “optimistic” since they assume that the future volcanic and solar forcings
are known in advance. The only partial exception is the stochastic LIM model (with
> 100 parameters) which is only marginally better (±0.085 K) than SLIM for forecast
horizons of one to two years after which it asymptotes to the linearly detrended SD.

Using the method of innovations, we developed a new way of forecasting fGn that20

allows SLIM hindcasts to be made; the long-time forecast horizon RMS error is thus
±0.109 K, the exploitation of the memory with the single parameter – the exponent
H ≈ −0.20±0.03 – reduces this to ≈ ±0.093 K for one year global hindcasts so that
SLIM remains better than or comparable to the multimodel GCM mean (Fig. 2).

Since this paper only deals with single time series (global scale temperatures) it is25

ideal for revisiting the problem of the “pause” or “slow down”, “hiatus” in the warming
since 1998. Lovejoy (2015) shows how SLIM hindcasts nearly perfectly predict this
hiatus. However, most applications involve predicting the natural variability at regional
scales. In a future publication, building on Lovejoy (2014b) we show how this can be
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done and quantify the improvement that the additional information (from the regional
memory) makes to the forecasts. For forecasts from months to a decade or so, the
SLIM forecast results promise to be better than alternatives.
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Table 1. (a) The effective climate sensitivities estimated by linear regression of log2ρCO2
against

the temperature anomalies at monthly and annual resolutions from global and Northern Hemi-
sphere series. The far right column shows the 20 year lagged sensitivity to (1900–2013), i.e.
using Tanth,∆t(t) = λ2×CO2,eff,∆t log2(ρCO2

(t−∆t)/ρCO2,pre) where ∆t = 20 years.

Resolution λ2×CO2,eff λ2×CO2,eff λ2×CO2,eff λ2×CO2,eff
(K/doubling, (K/doubling, (K/doubling, (K/doubling,
no lag, 1880– no lag, 1880– no lag, 1880– 20 yr lag, 1900–

2013) 1998) 1976) 2013)

Monthly Global 2.97±0.08 2.92±0.13 2.97±0.25 4.29±0.13
(dTs) Northern H. 3.41±0.11 3.11±0.17 3.10±0.33 4.99±0.18

Annual Global 2.33±0.16 2.26±0.24 2.08±0.48 3.73±0.25
(LOTI) Northern H. 2.56±0.23 2.25±0.34 2.41±0.65 3.96±0.38
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Table 1. (b) The various SDs of the temperature residues (Tnat) after removing Tanth at monthly
and annual resolution and the estimate of H obtained assuming perfect scaling over a factor of
12 in time scale, units (K). The results are close to the theory: H = −0.20±0.03.

Monthly Annual H = log[σT ,yr/σT ,month]/ log12

Global 0.201 0.109 −0.24
Northern 0.273 0.155 −0.23
Hemisphere
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Table 2. A comparison of Root Mean Square (RMS) variances (data residues) and hindcast
errors (deterministic and stochastic models) of global scale, annual temperatures. See also
Fig. 2. Note that the GCM hindcasts are all “optimistic” in the sense that they use the observed
volcanic and solar forcings and these would not be available for a true forecast. In comparison,
the stochastic models forecast the responses to these (unknown) future forcings.

Row 1 year 5 year 9 year
anomalies anomalies

Temperature, residues

1 Pre-industrial multiproxies (1500–1900)a 0.112 0.105 0.098
2 Tnat: Residues (1880–2013) (no lag with CO2): Tanth(t) ∝ log2ρCO2

(t) 0.109 0.077b 0.070
3 Tnat,20: Residues from 1900–2013, 20 yr lag with CO2: Tanth,∆t(t) ∝ log2ρCO2

(t−∆t) 0.108
4 SD of the linearly detrended series 1880–2013 (residues, from a linear regression

with the date)
0.163

Deterministic forecasts (GCM’s)

5 Without data assimilation 1983–2004 (Smith et al., 2007) 0.132 0.106 0.090
6 With data assimilation (“DePresSys”) 1983–2004 (Smith et al., 2007) 0.105 0.066 0.046
7 CMIP3 simulations with bias and variance corrections 1983–2004 (Laepple et al.,

2008)
0.106 0.059 0.044

8 GFDL CM2.1 (initialized yearly) cited in Newman (2013) 0.11
9 CMIP5 multimodel ensemble (Doblas-Reyes et al., 2013) not initializedc 0.095
10 CMIP5 multimodel ensemble (Doblas-Reyes et al., 2013) initialized 0.06

Stochastic forecasts

11 LIMd (Newman, 2013) 0.085 (0.128) (0.155)
12 Baillie and Chung (2002) ARFIMAe 0.132±0.023
13 Baillie and Chung (2002) AR(1)f forecast 0.156±0.068
14 SLIM (one parameter, Stochastic 1880–2013)g 0.093 0.071 0.067

(0.102) (0.105)

a The average of the three multiproxies from Huang (2004), Moberg et al. (2005), Ammann and Wahl, (2007). These analyses were discussed in Lovejoy (2014a).
b The empirical 5 and 9 year anomaly values are close to the theoretical values 0.109×5−0.2 = 0.079 and 0.109×9−0.2 = 0.070.
c The results here are for a subset of the CMIP5 simulations that were run with and without annual data assimilation (initialization).
d Linear Inverse Modelling using, 20 eigenmodes, > 100 parameters. The errors in brackets are for the temperatures, not anomalies. Note that the 9 year LIM
value is almost identical to the SD of the residues of the linear regression (fourth row of the table).
e ARFIMA = Autogressive Fractionally Integrated Moving Average process; this is close to the SLIM model used here. However the data and the data treatment
were somewhat different. The annually, globally averaged temperatures from 1880 with a linear trend removed were used to make hindcasts over horizons of one
to 10 years for the decades 1930, 1940, 1950, 1960. For each decade all the forecast errors were averaged. The value indicated here is the mean of the decade
to decade mean error and the SD of that error, the errors cannot therefore be directly compared with the others. The data were from a series complied in 1986.
f AR(1) = AutoRegressive order 1, is equivalent to “enhanced persistence” in the preceding. The variance reduction when using ARFIMA instead of AR(1) is 29 %.
g The values in parentheses are for 1 year resolution temperatures.
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Table 3. The hindcast SDs (in units of K) at the finest resolutions (1 month, 1 year) for natural
variability temperatures obtained from the unlagged and 20 year lagged climate sensititivities.
Note that the lag makes very little difference to the hindcast error variance.

Resolution 〈ET (τ,τ)2〉1/2 〈ET (τ,τ)2〉1/2

No lag 20 yr lag

Monthly Global 0.148 0.146
Northern H. 0.214 0.209

Annual Global 0.093 0.092
Northern H. 0.132 0.133
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Figure 1. (a, upper left) Forecast skill for nondimensional forecast horizons λ =
(horizon/resolution) = 1, 2, 4, 8, ..., 64 (left to right) as functions of H . For reference, the
rough empirical values for land, ocean and the entire globe (the value used here, see below)
are indicated by dashed vertical lines. The horizontal lines show the fraction of the variance
explained (the skill, Sk , Eq. 47) in the case of a forecast of resolution τ data at a forecast hori-
zon t = τ (λ = 1; corresponding to forecasting the anomaly fluctuation one time unit ahead). (b,
upper right) The theoretical skill with infinite memory for various ratios of nondimensional fore-
cast horizons λ over the range 0 > H > −0.35 (top to bottom in steps of 0.05). The limiting value
H = −1/2 corresponds to Gaussian white noise with zero skill. The empirically relevant range
for the whole Earth (H ≈ −0.20±0.03) is in red, thick the best estimated parameter (H = −0.20).
(c, middle left) This illustrates the potentially huge memory in the climate system (especially
the ocean). It gives the λmem value such that Sx,λmem(1)/Sx,∞(1) = 0.9. When H = −1/2, there
is no memory and λmem is not defined, it diverges when H→ 0. (d, middle right) The theoretical
skills for processes with infinite (Eq. 47) and finite memory (Eq. 49) for the empirically relevant
parameter range (H = −0.23, brown, bottom, H = −0.17, red, top). The flat (constant skill) at the
top are the curves for the anomaly forecasts (i.e. with forecast horizon = τ = resolution = τ so
that λ = 1), the bottom curves are for constant resolution τ with forecast horizon. In each case
a triplet of curves is shown corresponding to varying lengths of memories used in the forecast:
infinite, 180 and 20 (the latter two corresponding to the those used for the monthly and global
forecasts analysed here). (e, lower left) The skill of λ = t/τ = 1 forecasts using the full memory
(black, Eq. 47, from a), the corresponding classical persistence forecast (red), Sk = 1−4(1−22H )
and the corresponding “enhanced persistence” result (blue; for this λ = 1 case, this is the same
as the AR(1) model forecast) with Sk = (22H+1−1)2. With classical persistence the skill becomes
negative for H.−0.2, so it is not shown over the whole range.
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Figure 2. ENSEMBLES experiment, LIM and SLIM hindcasts for global annual temperatures
for horizons 1 to 9 years. The light lines are from individual members of the ENSEMBLE exper-
iment, the heavy line is the multimodel ensemble adapted from Fig. 4 in Garcia-Serrano and
Doblas-Reyes (2012). This shows the RMSE comparisons for the global mean surface tem-
peratures compared to NCEP/NCAR (2 m air temperatures). Horizontal reference lines indicate
the SDs of Tnat (bottom), and of the linearly detrended temperatures (top). Also shown are the
RMS error for the LIM model (from Table 1a, Newman, 2013) and the SLIM model (Sect. 4
below).
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Figure 3. (a, upper left) The monthly surface temperature series from NASA GISS data (the
monthly dT s series). Top (red) is the global average, displaced upward by 1 K for clarity, the
bottom (blue) is the Northern Hemisphere series. (b, upper right) The same as (a) but for the
temperatures as functions of the logarithm of the CO2 concentration ρCO2

normalized by the
preindustrial value ρCO2,pre = 277 ppm (global values are displaced upward by 1 K for clarity).
The regressions have slopes indicated in Table 1a, they are the effective climate sensitivities to
CO2 doubling. (c) The residues of the above; the estimate of the natural variability, again the
global (red, top) has been shifted upward by 1 K for clarity.
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Figure 4. (a, upper left) The spectrum of the monthly residues for northern (blue) and global
(red) data. The slope β = 0.6 is shown corresonding to the best overall estimate (H = −0.20).
(b, upper right) The Northern Hemisphere (top, blue) and global (bottom, red) spectra, at
monthly (solid) and annual (dashed) resolutions using the NASA GISS surface temperature
series from 1880–2013. For frequencies higher than the lowest factor of ten, averages have
been made over ten frequency bins per order of magnitude in scale. In addition, the spectra
have been “compensated” by multiplying by ω0.54 so that spectra with H = −0.23 (β = 0.54)
appear flat. The range −0.17 < H < −0.23 corresponding to one SD limits (β = 1+2H , i.e. ig-
noring small multifractal intermittency corrections) corresponds to 0.54 < β < 0.66, the lower
and upper bounding reference lines are shown as dashed. (c, lower left) The RMS Haar fluc-
tuations for the northern (blue) and global (red) monthly series. Reference lines with slopes
H = −0.2 are shown, we see that the scaling is fairly well respected up to ≈ 100 years. The
raw Haar fluctuations have been multiplied by 2 (the “canonical calibration”, see Lovejoy and
Schertzer, 2012a) in order to bring them closer to the anomaly fluctuations. Also shown is the
NASA control run and the pre-industrial multiproxies. They all agree quantitatvely very well up
to about 100 years where the pre-industrial natural climate change starts to becomes impor-
tant. This shows that the monthly scale residuals are almost exactly as simulated by the GISS
model without any anthopogenic effects, supporting the idea that Tnat is a good estimate of the
natural variability. (d, lower right) Comparisons of the RMS Haar fluctuations of global scale
natural varilibty (Tnat) from (c), with those from land only (HADCRUT3, black) and from the
Pacific Decadal Oscillation (PDO, top, purple, from Lovejoy and Schertzer, 2013, Fig. 10.14).
Reference lines of slopes H = −0.1, −0.2, −0.3 are shown close to the curves for ocean, globe
and land respectively.
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Figure 5. The dimensionless ratios (R) of the hindcast error variances to the vari-
ance at the smallest resolution and horizon (with horizon λτ, resolution τ (top, R =
〈ET (λτ,τ)2〉/〈ET (τ,τ)2〉 = 1+ (2+2H)FH (λ)) and anomaly, with horizon λτ, resolution λτ (bot-
tom, R = 〈ET (λτ,λτ)2〉/〈ET (τ,τ)2〉 = λ2H ). The red are global, the blue Northern Hemisphere,
the thick, shorter curves are at annual resolution (τ = 1 yr) and the thin, longer lines are at
monthly resolution (τ = 1 month). Also shown (dashed) are the theory curves for H = −0.17,
−0.23 (top (black) and bottom (brown) of each dashed pair respectively). The data closely fol-
low the H = -0.17 curves. The SDs of at the highest resolution 〈ET (τ,τ)2〉1/2 are given in Table 3.
This dimensionless plot has no adjustable parameters.
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Figure 6. A log–log plot of the standard devations of the anomaly hindcasts with the theoretical
reference line corresponding to H = −0.20. The solid lines are for the monthly data, the dashed
lines for annual data, red for global, blue for Northern Hemisphere.
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Figure 7. The anomaly forecast skill on a log-linear plot for both all series (annual thin, monthly
thick, global red, Northern Hemisphere, blue). Also shown are pairs of theoretical predictions
(constant skill independent of the forecast horizon) for various values of H , the top (dashed)
member of the pair is for an infinite memory, the bottom solid line is for the finite memory used
here: the monthly series has a memory of 180, the annual series has 20. This plot has no
adjustable parameters.
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Figure 8. The forecast skill for the temperature at fixed resolutions (one month, bottom left,
one year, upper right) for global (red) and Northern Hemisphere (blue) series. Also shown are
the exact theoretical curves (for H = −0.17) that take into account the finite memories of the
forecasts (20 years, 15 years annual, monthly series respectively). The raw curves were shifted
a little upward so that their long-time parts were close to the theory; this is equivalent to using
the theory to improve the estimate of the ensemble average skill from the single series that
were available.
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Figure 9. The nondimensional empirical correlations of the forecast temperatures (left column)
and anomalies (right column), the same data as previous but with different empirical compar-
isons and also with comparisons with theory for H = −0.2 (thick black), H = −0.17, −0.23 top
and bottom dashed black. Now note that in all cases the one SD bounds (dashed) on the empir-
ical and theoretical curves overlap virtually throughout. The theory curves have no adjustable
parameters.
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